
32

Scalable and Efficient Flow-Based Community Detection
for Large-Scale Graph Analysis

SEUNG-HEE BAE, University of Washington, Western Michigan University
DANIEL HALPERIN, University of Washington, Google
JEVIN D. WEST, University of Washington
MARTIN ROSVALL, Umeå University
BILL HOWE, University of Washington

Community detection is an increasingly popular approach to uncover important structures in large net-
works. Flow-based community detection methods rely on communication patterns of the network rather
than structural properties to determine communities. The Infomap algorithm in particular optimizes a
novel objective function called the map equation and has been shown to outperform other approaches in
third-party benchmarks. However, Infomap and its variants are inherently sequential, limiting their use for
large-scale graphs.

In this article, we propose a novel algorithm to optimize the map equation called RelaxMap. RelaxMap pro-
vides two important improvements over Infomap: parallelization, so that the map equation can be optimized
over much larger graphs, and prioritization, so that the most important work occurs first, iterations take
less time, and the algorithm converges faster. We implement these techniques using OpenMP on shared-
memory multicore systems, and evaluate our approach on a variety of graphs from standard graph clustering
benchmarks as well as real graph datasets. Our evaluation shows that both techniques are effective: Re-
laxMap achieves 70% parallel efficiency on eight cores, and prioritization improves algorithm performance
by an additional 20–50% on average, depending on the graph properties. Additionally, RelaxMap converges
in the similar number of iterations and provides solutions of equivalent quality as the serial Infomap
implementation.

Categories and Subject Descriptors: I.5.3 [Clustering]: Algorithms; F.1.2 [Modes of Computation]: Par-
allelism and Concurrency

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Community detection, graph analysis, parallelization, prioritization

ACM Reference Format:
Seung-Hee Bae, Daniel Halperin, Jevin D. West, Martin Rosvall, and Bill Howe. 2017. Scalable and efficient
flow-based community detection for large-scale graph analysis. ACM Trans. Knowl. Discov. Data 11, 3,
Article 32 (March 2017), 30 pages.
DOI: http://dx.doi.org/10.1145/2992785

This work is sponsored in part by a subcontract from Pacific Northwest National Labs and by the Na-
tional Science Foundation through the collaborative SI2-S2I2 grants 1216726, 1216754, 1216872, 1216879,
1216884. M. Rosvall was supported by the Swedish Research Council grant 2012-3729.
Authors’ addresses: S.-H. Bae, Department of Computer Science, Western Michigan University, Kalamazoo,
MI, 49008; email: seung-hee.bae@wmich.edu; D. Halperin, 601 N. 34th Street, Seattle, WA, 98103, Google;
email: daniel@halper.in; J. D. West, Information School, University of Washington, Seattle, WA, 98195; email:
jevinw@uw.edu; M. Rosvall, Integrated Science Lab, Department of Physics, Umeå University, SE-901 87,
Umeå, Sweden; email: martin.rosvall@umu.se; B. Howe, Information School, University of Washington,
Seattle, WA, 98195; email: billhowe@uw.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1556-4681/2017/03-ART32 $15.00
DOI: http://dx.doi.org/10.1145/2992785

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

http://dx.doi.org/10.1145/2992785
http://dx.doi.org/10.1145/2992785

32:2 S.-H. Bae et al.

1. INTRODUCTION

Community detection in large graphs is emerging as a first-class technique in a num-
ber of applications: functional similarity in biological networks [Guimera and Amaral
2005; Gavin et al. 2006], collaboration communities in research networks [Girvan and
Newman 2002], and the macro-structure of science through bibliometrics [Rosvall and
Bergstrom 2011].

The community detection problem is difficult and is fundamentally different than the
graph partitioning problem, which is known to admit a number of scalable approaches.
Where graph partitioning attempts to find an optimal binary split of a network, commu-
nity detection attempts to simultaneously answer two questions: How many clusters
should be used, and which vertices should be assigned to which clusters? While bi-
nary splits can be repeated for a given network, graph partitioning methods do not
inherently identify the optimal number of splits.

Standard structural approaches to community detection use the intuition that intra-
community connections are more common than inter-community connections. The mod-
ularity measure [Newman and Girvan 2004] scores a partitioning of a graph into com-
munities or modules highly when the number of module-internal edges is higher than
would be expected by chance. However, modularity optimization methods suffer from
a “resolution limit” that depends on the size and connectivity of the network, and thus
modularity cannot detect small clusters [Fortunato and Barthélemy 2007]. Further,
Guimerà, Sales-Pardo, and Amaral showed that random graphs have high-modularity
subsets, suggesting that structures found with this method may not be reliable struc-
ture in practice [Guimerà et al. 2004]. Spectral and min-cut techniques have been
shown to be effective at finding structure at all scales, but exhibit a bias such that
aggressive optimization of certain community score functions can destroy intuitive
notions of cluster quality [Leskovec et al. 2010].

In response to these limitations of structure-based approaches, Rosvall et al. proposed
a flow-based formulation of the community detection problem [Rosvall et al. 2009]. A
flow in this context is modeled as a random walk through the graph, where each
vertex is assigned a weight representing its visit frequency, an alternative formulation
of the PageRank algorithm. Using this flow information, the community detection
problem is to find a graph partitioning that maximizes the intra-partition flow and
minimizes the inter-partition flow. A partitioning is scored by computing the length of
a compressed representation of this flow according to the map equation [Rosvall et al.
2009]; better clusterings will have shorter codes. This formulation has been shown to
capture some intuitive notions of community. While all two-level community-detection
algorithms by construction must have some sort of resolution limit, it is orders of
magnitudes less restrictive than for modularity [Kawamoto and Rosvall 2015]. The
flagship algorithm and implementation for Rosvall et al.’s formulation [Rosvall et al.
2009] is called “Infomap.”

It has been repeatedly demonstrated in third-party evaluations that Infomap finds
better clusterings than competing community detection algorithms [Lancichinetti and
Fortunato 2009; Aldecoa and Marı́n 2013]. In Lancichinetti and Fortunato [2009] did
a comparative analysis with 12 different community detection algorithms, including
Infomap, and two different benchmarks, by measuring normalized mutual information
(NMI) between the planted partition of the benchmark datasets and the outputs
of those algorithms. The study showed that Infomap outperforms other algorithms.
In Aldecoa and Marı́n [2013] did a more comprehensive study with 17 different
community detection algorithms and three benchmarks, which consist of a more
complicated benchmark, based on Relaxed Caveman (RC) structures, in addition to
the two benchmarks in Lancichinetti and Fortunato [2009]. Infomap is a top-ranked

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:3

community detection algorithm among 17 different algorithms with respect to the
results with the three benchmarks in their study [Aldecoa and Marı́n 2013].

Although Infomap is a competitive community detection algorithm, it is sequential
and cannot scale to handle the graphs with millions and billions of edges that are
becoming commonplace. It requires 6–8 hours to detect communities of a graph with
around 60 million vertices and 150 million edges—a relatively long runtime for a
relatively small graph. Parallel algorithms are therefore crucial to enabling the broad
application of this clustering technique. Our work represents the first such algorithm.

In this article, we present a new algorithm, named RelaxMap, which optimizes the
same flow-based objective as Infomap but provides two strong improvements. First,
RelaxMap uses with a parallel search procedure that relaxes serial consistency con-
straints to improve scalability. The core approach is to relax concurrency assumptions
to significantly reduce lock contention: (a) decisions to move vertices between modules
are made in parallel without locking for checking consistency, but (b) the algorithm
acquires a global lock before applying each move for assuring the shared module sta-
tus and the objective function values are updated consistently. We show that these
techniques offer significantly improved performance on modern multicore machines
while achieving as good quality scores and similar convergence rates as the sequential
algorithm.

Second, RelaxMap employs a prioritization heuristic that prunes from the search
space those vertices that are unlikely to significantly contribute to the optimization
goal. This prioritized searching mechanism improves efficiency by a factor of 1.2–1.5
times, and still provides quality outputs as good as the original sequential algorithm in
our experiments. Prioritization applies to flow-based clustering algorithms, including
the serial Infomap algorithm; prioritization can be used with and without parallelism,
and its improvements are cumulative. The algorithm that combines parallelism and
prioritization, which we call prioritized RelaxMap, offers quality as good as RelaxMap
and more efficient runtime performance than RelaxMap alone.

We offer the following contributions:

—We describe a novel parallel algorithm for graph clustering called RelaxMap that
parallelizes the optimization of flow-compression for community detection. To the
best of our knowledge, this is the first parallel algorithm for flow-based community
detection.

—We propose a prioritization strategy that avoids handling vertices that do not signif-
icantly improve the objective function. This strategy can improve performance by a
factor of 1.5 for all parallel and serial algorithms considered.

—We present an experimental evaluation of the proposed algorithms against bench-
mark graphs [Lancichinetti et al. 2008], demonstrating that RelaxMap and the priori-
tized RelaxMap find solutions that are measurably similar to the “planted partitions”
on which the benchmarks are based, but delivers significantly better performance.

—Using a variety of real graphs (where the true clusters are unknown), we show that
the proposed parallel algorithms can achieve quality scores similar to the sequen-
tial algorithm (up to the variance associated with different random seeds), while
achieving 70% parallel efficiency and significant performance improvement.

This article is an extended version of an earlier publication on RelaxMap [Bae et al.
2013]. In this article, we provide more thorough evaluation of RelaxMap and addition-
ally propose an efficient prioritization scheme to enhances both RelaxMap and other
techniques. Section 2 summarizes the flow-based community detection algorithm and
the objective function called “the map equation.” We describe the proposed paralleliza-
tion and prioritization methods in Section 3 and Section 4, respectively. In Section 5,
we evaluate both techniques, independently and when combined, on benchmark and

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:4 S.-H. Bae et al.

real graph datasets. Finally, we discuss related work in Section 6 before presenting
conclusions and future work in Section 7.

2. THE MAP EQUATION

In this section, we briefly summarize the principles behind the map equation, a flow-
based, information-theoretic objective function for graph community detection. We then
describe the core Infomap algorithm for optimizing the map equation over possible
clusterings. Following the literature, we will refer to a cluster as a module in this ar-
ticle. Infomap is designed for cluster-weighted directed networks, which arise in many
important applications, and has been shown to outperform other methods in objec-
tive third-party benchmarks [Lancichinetti and Fortunato 2009; Aldecoa and Marı́n
2013]. Infomap has many generalizations, such as clustering into hierarchically nested
modules [Rosvall and Bergstrom 2011] and operation on higher order Markov dy-
namics [Rosvall et al. 2014], but here we focus on two-level clustering and first-order
Markov dynamics. In the next section, we will show how RelaxMap can optimize the
map equation in a parallel fashion.

The term “map” in map equation is an analogy to road maps, where the regions can be
defined by traffic density: Intra-region traffic is more dense than the inter-region traffic.
Optimizing the map equation over possible module assignments produces modules with
this same property: A random walker through the graph will tend to spend more time
within a module than moving between modules. Flow is represented as a directed edge
weights, which in many applications can be interpreted directly as traffic flow (e.g.,
airplanes flying between airports [Menon et al. 2004]), or it may be interpreted as
information flow (i.e., a citation graph in the scientific literature [West et al. 2010]).

The map equation expresses this objective via information theory. Any regularity in
data can be used for compression, such that the compression ratio one achieves can
be interpreted as a measure of one’s ability to find regularity in the data. The map
equation takes advantage of this minimum description principle by measuring the
description length of a random walker (or of real flow) on a network with a modular
codebook structure [Rosvall et al. 2009]. Each one of |M| modular codebooks describes
movements between vertices assigned to the corresponding module.

Say there is a module m among |M| modules. Let α be a member of module m,
α ∈ m, and let the vertex visit rate of vertex α be pα. The vertex visit rates can be
computed by finding PageRanks of all vertices and dividing each PageRank by the sum
of PageRanks of all vertices. For instance, the vertex visit rate of vertex α, pα, is equal
to pg(α)/

∑
v∈V pg(v), where pg(α) and pg(v) are the PageRanks of vertices α and v,

respectively. Also, if the probability for the random flow to exit module m is defined
as qm�, then the overall probability for the flow in module m, denoted pm

�, is equal to∑
α∈m pα + qm�, the sum of the vertex visit rates of members of the module m and the

exit probability of module m. With the probability distribution of a codebook of module
m, denoted Pm, the average description length of a module codebook for module m,
H(Pm), can be calculated as follows:

H(Pm) = − qm�

pm
�

log
(

qm�

pm
�

)
−

∑
α∈m

pα

pm
�

log
(

pα

pm
�

)
(1)

according to Shannon’s source coding theorem [Shannon 1948a, 1948b].
Moreover, a single index codebook describes movements between the module

codebooks. With Q for the probability distribution of module entering rates qm�,
the average description length is given by the entropy H(Q). The frequency of use
of the index codebook is q� = ∑

m∈M qm�. Also, pm
� represents how many times the

module codebook of module m is used. Taken together, the map equation, Equation (2),

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:5

ALGORITHM 1: Pseudocode for the Serial Infomap Algorithm [Rosvall et al. 2009]
1: input: Network G = (V, E), where V = set of N vertices, E = set of edges. Minimum

quality improvement threshold τ

2: Run PageRank to calculate vertex visit rate for each vertex.
3: M = {mi = {vi} | vi ∈ V }
4: L = L(M) in (2)

5: repeat
6: Lprev = L
7: R = random sequence of integers 1 to N
8: for i = 0; i < N; i++ do
9: mnew = bestNewModule(M, vR[i]);
10: Move vR[i] to mnew module, and update M and L.
11: end for
12: until Lprev − L < τ

13: return M

measures the average description length L(M) given modular assignments M:

L(M) = q� H(Q) +
∑
m∈M

pm
�H(Pm). (2)

Minimizing the map equation over all possible module assignments gives the optimal
modular structure for describing movements on the network, and therefore reveals
important structures with respect to the dynamics on the network [Rosvall et al. 2009].

Algorithm 1 illustrates the core algorithm of the fast stochastic and recursive search
algorithm implemented in Infomap [Rosvall et al. 2009]. The core algorithm proceeds
in two phases:

—Phase 1: (line 2) The visit probability (rank) of each vertex is computed in terms of
the network flow.

—Phase 2: (lines 5–12) The space of possible modularizations is greedily searched. The
initial modules are singletons—one module per vertex. For each vertex v, the call
bestNewModule(M, v) (line 9) considers each possible move of v to a neighboring
module and greedily selects the one that reduces L(M) by the greatest amount. This
function computes the new exit probability that would result from each move, and
uses the value to compute the change in L. The move that generates the greatest
improvement is selected, and the target module is returned. The algorithm stops
when the change in the minimum description length (MDL) score in each iteration
is less than a minimum quality improvement threshold, Lprev − L < τ .

In the search procedure for the best new module of a vertex v (line 9), the algorithm
calculates the total in-flow and total out-flow between the vertex v and its neighbor
modules (i.e., the set of modules to which any of its neighbors belong). Finally, the
improvement in the MDL for each candidate move can be calculated from the measured
total in-/out-flow information. The algorithm assigns the vertex v to whichever new
module minimizes the MDL.

After the core algorithm converges to a solution, Infomap algorithm generates a new
network based on the current module assignment by aggregating vertices assigned in
each module as a vertex. Then, it revisits Phase 2 with the aggregated network. This
aggregation method iterates until no meaningful quality improvement is achieved.
This aggregation step was used by the Louvain method [Blondel et al. 2008] for

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:6 S.-H. Bae et al.

ALGORITHM 2: Pseudocode for a Naı̈ve Lock-Free Algorithm
1: for (in Parallel) i = 0; i < N; i++ do
2: Mnew[R[i]] = bestNewModule(M, vR[i]);
3: end for
4: M = Mnew, L = L(Mnew)

modularity-based community detection implementation, and the Infomap algorithm
uses this technique for finding communities by minimizing the map equation.

In addition to the core algorithm, Rosvall et al. applied two heuristics for improving
the mapping accuracy to the core algorithm: (1) Sub-module movements and (2) Single-
node movements heuristics [Rosvall et al. 2009]. For the sub-module movements heuris-
tic, we extract sub-modules from each module by running Infomap algorithm within a
network built by members of each module only, and then combine vertices assigned in
each sub-module as a vertex, which is similar to the aggregation step mentioned above.
We can think of both heuristics as the adjustment of the unit of each movement in the
Phase 2 of the core algorithm. In fact, the algorithm repeats the following in Phase 2:
adjusting the movement unit (e.g., single-node, sub-module, or aggregated-node) and
iteratively searching new module for each movement unit, so-called “Super-Step,” until
the algorithm meets the stop condition.

We also implement the aggregation step and the sub-module movements and single-
node movements heuristics in the proposed parallel algorithms, but the core algorithm
dominates the elapsed time so we focus the core algorithm in our article.

Details of the map equation and the Infomap community detection algorithm are
available in the original paper [Rosvall et al. 2009] and a dynamic visualization of the
technique is available online.1

3. PARALLELIZING FLOW-BASED COMMUNITY DETECTION

To parallelize Algorithm 1, we observe that Phase 1 of that algorithm is the same as
PageRank [Brin and Page 1998] for which there are many parallel and distributed
implementations [Low et al. 2012; Ekanayake et al. 2010; Zaharia et al. 2012; Gleich
and Zhukov 2005]. The remainder of this section describes how to parallelize Phase 2.

To compute the exact same process as the sequential algorithm in parallel, each
thread attempting to move a vertex must acquire a lock on the module to which that
vertex belongs as well as locks on all neighboring vertices (including itself) and all
neighboring modules. This direct approach to parallelization requires a prohibitive
amount of synchronization between threads, and our initial experiments showed that
this approach would offer no siginficant benefit over the serial algorithm. As a result,
we do not discuss this “lock-intensive” approach further.

Another approach to parallelization is to simply ignore the locks altogether, as ex-
plored in several recent papers on optimization (cf., Niu et al. [2011]). The reasoning
is that the improvement in scalability offsets the loss of quality improvement on each
step, such that the overall convergence rate is faster. However, this approach will not
necessarily converge at all, depending on the problem. We evaluate this naı̈ve approach
as a baseline method.

3.1. The Parallel Algorithm

We can design a naı̈ve lock-free scheme by checking each vertex independently in
parallel and simply ignoring any interaction between neighboring vertices. The naı̈ve
lock-free algorithm runs steps 8–11 of Algorithm 1 for each vertex in an independent

1http://www.mapequation.org.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

http://www.mapequation.org

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:7

Fig. 1. The minimum description length (MDL) with respect to the iteration number of the naı̈ve lock-free
parallel scheme with web-Stanford dataset in Table II.

thread, identifying a new module for the vertex being considered based only on the
information from the previous iteration M. In contrast, the serial algorithm considers
only one vertex at a time, such that each move has access to the results of all prior
moves. This naı̈ve parallel algorithm is summarized in Algorithm 2. In this scheme,
each candidate move is run independently since the previous module assignment for
all vertices is already fixed, so the algorithm does not need to use any synchronization
to make decisions for several vertices in parallel. This simple parallel algorithm can
be implemented using an additional module assignment array, denoted Mnew, to store
each movement decision at the current iteration, and updating the module array and
corresponding module values, M, based on the stored movement decisions, after all the
vertices finish their movement decisions at current iteration.

This approach will achieve perfect parallelism for the most expensive part of this
application, from lines 8 to 11 in Algorithm 1, which has complexity O(E). However,
since the update for each movement at line 10 in Algorithm 1 is postponed until the
naı̈ve algorithm completes all parallel moves, it requires an additional procedure to
update status values for each module and the new MDL at the end of each iteration as
shown in line 4 in Algorithm 2.

The naı̈ve method described is not competitive with the sequential method, however,
as seen in Figure 1. In Figure 1, the naı̈ve algorithm produces clusters with much
worse quality than the sequential Infomap with a real-world dataset, web-Stanford, in
Table II. To see why, consider the simple four-vertex network in Figure 2. In the initial
stage, each vertex is assigned to its own module, which we write as a ∈ A, . . . , d ∈ D,
where a, . . . , d represent vertex IDs and A, . . . , D are module IDs. One thread moves
a to B, while an independent thread moves b to A, based on the (stale) network flow
and the module information from the previous iteration. The two moves offset each
other, causing the algorithm to make cyclical movements with no net improvement in
quality, and converge prematurely. Figure 1 shows an example execution where the
naı̈ve parallel algorithm converges prematurely, a behavior we saw frequently.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:8 S.-H. Bae et al.

Fig. 2. An example of the cyclical movement in the naı̈ve lock-free parallel algorithm; four-vertex graphs
running in two-way parallelism. Assume one thread examines vertices a and c and a different thread
examines vertices b and d. On the first iteration, vertex a will be moved to module B and vertex b will be
moved to module A, which will have no effect on the module structure.

ALGORITHM 3: The Core Algorithm of the RelaxMap
1: for (in Parallel) i = 0; i < N; i++ do
2: mnew = bestNewModule(M, vR[i]);

3: acquire a lock for the updates.
4: Move vR[i] to mnew module, and update M and L.
5: release lock.
6: end for

To improve on the naı̈ve method, we propose an algorithm RelaxMap based on the
assumption that real networks are typically sparse in practice. In a sparse network, the
movement of a single vertex will typically only affect a small subset of the graph. As a
result, if we consider a small number of random vertices concurrently, they are unlikely
to influence each other, and the problems with the naı̈ve method will be minimized.

In RelaxMap, each of p threads examines a vertex independently, then acquires a
lock to apply the winning move and update the module information. When consider-
ing the p vertices, the move decisions are made with stale module information from
the previous parallel round. In addition, the RelaxMap parallel algorithm avoids the
cyclical-movement problem, shown in Figure 2. To see why, consider the case where one
thread p1 examines a and c and a different thread p2 examines b and d as in Figure 2.
Say two threads worked on a and d concurrently, deciding to move a to B and d to C.
Then, as the two threads begin examining c and b respectively, they have access to the
current module assignments: a, b ∈ B and c, d ∈ C. So, thread p2 would decide to keep
b in B since it knows a is also in B, and no cyclical movement occurs.

There is still some possibility of encountering a problem: The two threads could
examine a and b at first concurrently, moving a to B and b to A, but the probability of
this case will be very low if the number of vertices is large. And, even if some cyclical
movements happen during one iteration, they will be fixed at later iterations with high
probability if the MDL decreases enough to continue.

To make this specific, let us assume among N vertices, there are two strongly con-
nected vertices. If we run p-way parallel RelaxMap (p � N in general), the probability
that those two vertices are examined concurrently is (p−1)/N ≈ p/N. If the algorithm
stops after t iterations, then the probability that those two vertices executed at the
same time through all the t iterations is (p/N)t because the algorithm searches new
modules for vertices in random order at each iteration. The two vertices will not be run

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:9

concurrently at least once among t iterations in 1 − (p/N)t ≈ 1 probability. Therefore,
we argue that the cyclical movement problem will not be an issue in practice.

The main difference between the naı̈ve lock-free algorithm and the RelaxMap is
the following: RelaxMap considers batches of p vertices concurrently, while the naı̈ve
method considers batches of N vertices concurrently. Since p � N, the probability that
two or more of the p vertices are interdependent is low, and the algorithm can converge
almost as quickly as the serial version.

The RelaxMap algorithm is described in Algorithm 3. One specific feature of the
RelaxMap (and the Infomap) algorithm is that the MDL value, L, and the statistics of
modules (i.e., exit-probability qm� and sum of the visit-rates,

∑
α∈m pα, for each module

m) are always correct with respect to the current module assignment for the consistent
and efficient calculation of L and correct algorithmic procedure. For achieving the
correctness of those values, we use a global lock in lines 3 and 5 of Algorithm 3.
Since we use a global lock for updating module information of a vertex movement in
RelaxMap, the updating step would be a bottle neck for the parallel performance of
RelaxMap if the moving vertex were a very high-degree vertex. Even though using
locking mechanism for consistency might be expensive in some high-degree vertices
cases, it will reduce the overall number of iterations for the convergence to the final
solutions, which will finally reduce the runtime of the algorithm. We tested RelaxMap
without acquiring the global lock in lines 3 and 5 of Algorithm 3 to see how much
it affects the algorithm. This approach was ineffective, for two reasons. First, the
inconsistency caused the algorithm to converge slower than when the consistency is
achieved, in some cases slower than the sequential algorithm. Second, the incorrect
module information results in incorrect counting for active module numbers, which
causes race conditions and subsequent memory faults.

4. PRIORITIZED FLOW-BASED COMMUNITY DETECTION

In the last section, we showed how to scale the clustering process by considering module
movements for many nodes in parallel. Now, we will show how to further optimize
the search process by prioritizing which nodes we consider. As a motivating example,
consider Figure 3, which shows the number of vertices the algorithm chose to move
in each of the first 10 iterations for the Live Journal dataset. In the first iteration,
more than 80% of vertices (more than 4 million vertices among 4,847,571 vertices as
shown Table II) are moved to new modules—that most nodes move is expected, since
each vertex starts in its own module. However, the graph also shows that in each
subsequent iteration, many fewer vertices move; noting that the y-axis is logarithmic,
the number of moved vertices decreases nearly exponentially. Despite this property,
both Infomap Algorithm 1 and RelaxMap (as described thus far) consider every vertex
in each iteration. Searching all the vertices in each iteration will not be a significant
runtime cost for small datasets, but for large datasets, such as millions of vertices,
it will be a significant runtime cost without much gain per each iteration after a few
iterations are done. Intuitively, an optimization algorithm should be able to exploit this
property to gain efficiency: If an algorithm could identify the nodes that are likely to
move between modules, it might do much less work.

Phase 2 of the flow-based community detection algorithm in Algorithm 1 is an itera-
tion mechanism of the following two-steps:

—Find new module for a vertex where the objective function is maximally optimized
(line 9).

—Apply new module for the vertex and update module status (line 10).

After finishing the above two-steps for all vertices, we need to check whether the
algorithm is converged to a solution or not. It will iterate for a new search step, unless

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:10 S.-H. Bae et al.

Fig. 3. The number of moved vertices among 5 million vertices in each iteration of the first 10 iterations
when we run Algorithm 1 with the soc-LiveJournal1 dataset in Table II. Note that the y-axis of the graph is
log-scale and the number of moved vertices drops down almost exponentially.

it has converged to a solution, which is determined by measuring quality improvement
(Lprev − L < τ). The original Infomap algorithm in Algorithm 1 assumes that each
iteration is independent, so all of the vertices are examined again for the next iteration.

However, if we look into the details of the searching mechanism in Algorithm 1, we
can find that the new community for a vertex v will be affected by its neighbor vertices’
community-assignments and the changes of the neighbor communities. On the other
hand, the changes of long-distanced vertices from a vertex will not affect finding new
community for the vertex at all. In other words, if a vertex v changed its community,
then it affects the assignment of the community for only a subset of vertices.

Figure 4 illustrates the possible priority relation resulted from a vertex movement.
When a vertex v moved from old module Ma to new module Mb, each vertex could belong
to one of three different groups:

—The direct neighbors of the vertex v. The orange vertices n1, n2, and n3 in Figure 4
are direct neighbors of v. We refer to this group as Neighbors.

—The members of the source and target module that are not direct neighbors of v. The
pink vertices m1 and m2 in Figure 4 are members of Ma or Mb but are not neighbors
of v. We refer to this group as Mod-Members.

—The neighbors of the vertices in Mod-Members that are not in the source or target
module. The green vertices mn1, mn2, and mn3 in Figure 4 are neighbors of vertices
in Ma or Mb, but are not themselves in Ma or Mb. We refer to this group as Mod-
Neighbors.

The yellow vertices c1, c2, and c3 in Figure 4 are none of the above categories. In Figure 4,
it is clear that the movement of vertex v from Ma to Mb will not make any notable change
related to the calculation of the map equation, Equation (2), from c1, c2, and c3 vertices.
Vertices in the other three groups, i.e., Neighbors, Mod-Members, and Mod-Neighbors,
are likely affected for searching new modules for them.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:11

Fig. 4. An example of a movement of a vertex v from old module Ma to new module Mb and possible
prioritized vertices. The different colors represent different prioritized groups: the direct neighbors of v in
orange, the member of old module Ma and new module Mb in pink, and the neighbors of the vertices in Ma
and Mb in green. The vertices that are unrelated to a vertex v are in yellow.

Among those three different active groups, we can give the priority based on the
possibility of impact for quality improvement. Possible priority for getting maximally
optimized movement in next iteration from a movement of a vertex v would be following:

—Neighbors: The direct neighbors might be mostly affected from the movement since
they are directly connected the moved vertex v. Each flow connected via v directly af-
fects the flow between vertices in this group and their neighbor modules are changed
due to this move.

—Mod-Members: Among members of the old module, some of them might be in the old
module due to the moved vertex v, so they should be investigated the possible moves
in the next iteration. Similarly, some of the members in the new module might be
better to be separate with it, so they should be tested as well.

—Mod-Neighbors: Some neighbors of the members of the old module would be in the
old module if the moved vertex v were not there. On the other hand, some neighbors
of the members of the new module would be in the new module if it were there. Thus,
we need to check them whether there will be some improvement.

Based on the above rationale, we proposed a prioritized searching mechanism for
finding possible movements of vertices in each iteration, in that, we investigate only
the vertices in some top-priority groups, which activated at the previous iteration.

4.1. Effect of Different Prioritization Schemes

We examined the effectiveness of the three different active groups of vertices, in 9 of the
first 10 iterations, except the first iteration. Figure 5 illustrates the MDL improvement
for top 100 moved vertices sorted by its rank. Each point is labeled by its membership
in one of the active groups. The data was collected from one specific representative
iteration in the experiments with web-BerkStan and web-Stanford datasets. The plot

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:12 S.-H. Bae et al.

Fig. 5. The MDL improvement (�(MDL)) corresponding to the rank of the top 100 ranks. Each active
group is expressed in different shape. Most of the top 100-ranked improvements (�(MDL)) occur in the
Neighbors activity group (circles). This illustrates that we could achieve most of the quality improvements
by investigating the Neighbors activity group only.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:13

Table I. When a Vertex is Moved from One Module to Another, Its Direct Neighbors Contribute
More than 95% of the Quality Improvement in the Next Round. Members of the Same Module

and Members of Neighboring Modules Also Contribute, but to a Much Lesser Extent.
Therefore, Prioritizing the Search to the Direct Neighbors is Effective

Dataset Neighbors (%) Mod-Members (%) Mod-Neighbors (%) Others (%)
web-BerkStan 95.53 1.81 2.62 0.04
web-NotreDame 94.07 3.03 2.86 0.04
web-Stanford 96.03 1.33 2.56 0.08

ALGORITHM 4: Pseudocode for the Phase 2 by Prioritization Method

1: Â = V ;
2: repeat
3: Lprev = L
4: A = Â;
5: Â = ∅;
6: R = randomSequentialOrder(A);
7: for i = 0; i < R.size(); i++ do
8: mold = M[vR[i]];
9: mnew = bestNewModule(M, vR[i]);
10: if mnew != mold then
11: Move vR[i] to mnew module, and update M and L.
12: Add all neighbors of vR[i] to Â.
13: end if
14: end for
15: until Lprev − L < τ

indicates that the vertices in the Neighbors group (in Figure 5(a) and (b))—the vertices
that are direct neighbors of vertices that moved in the previous iteration—are highly
ranked, and therefore contributing most significantly to improving the quality score.
The vertices in the groups Mod-Members and Mod-Neighbors are not as highly ranked.

We performed a similar analysis with the web-NotreDame dataset, and the result was
similar to Figure 5. These results suggest that most of the important moves involve
vertices in the Neighbors group, and that prioritizing this group can dramatically
reduce the work without sacrificing significant quality.

Table I shows the portion of the quality improvement by each group in percentage
among all movements of original method, in 9 of 10 iterations (except the first iteration),
with respect to three different real-world datasets. �L(M) is used as a measure of the
quality improvement. The Neighbors group covers about 95% of the overall quality
improvement, and the other active groups covers around 5%. The improvement by the
vertices in none of the active groups was negligible (less than 0.1%).

As shown in Table I, Neighbors group is dominant for the quality improvement. We
may still cover the remaining 5% quality improvement by activating Mod-Members
and Mod-Neighbors groups, but this strategy involves significantly more computation
time for relatively little improvement in quality. Also, even if we designed to activate
only the vertices in the Neighbors group for the proposed prioritized scheme, it would
be still possible that some of the vertices in the Mod-Members or Mod-Neighbors group
can be activated as the vertices in the Neighbors group in later iterations, which would
result in making up the 5% quality improvement. Based on this analysis, we chose to
prioritize only Neighbors group in our proposed method. In Section 5.2, we can see that
the prioritization method results in no measurable quality loss for every tested dataset
and environment.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:14 S.-H. Bae et al.

Algorithm 4 shows the pseudocode of the proposed prioritization method of the com-
munity detection algorithm. Aand Ârepresent the sets of the current activated vertices
and active vertices for next iteration, correspondingly. M shows the current module as-
signment and the module status information.

In addition, we combine the prioritization method into the proposed parallel al-
gorithm Section 3, called prioritized RelaxMap (hereafter, PriorMap in short). Our
experimental results in Section 5 shows that PriorMap is much more efficient than
the regular independent searching mechanism, and still provides compatible outputs
in terms of the quality.

5. EXPERIMENTAL ANALYSIS

We study RelaxMap and PriorMap experimentally to answer three questions: First, do
RelaxMap and PriorMap produce clusters that match the quality of state-of-the-art flow-
based clustering (Infomap), despite RelaxMap’s relaxed consistency constraints? We
evaluate both methods on benchmark graphs for which the known clusters (“planted
partitions”) are available, then consider a set of real graph datasets (Section 5.2).
Second, do RelaxMap and PriorMap significantly improve performance over the serial
algorithm? We evaluate performance over the same graph datasets using three dif-
ferent machines and up to 60 cores (Section 5.3). Third, is PriorMap more efficient
than RelaxMap without output quality loss? We evaluate performance over the same
graph datasets by PriorMap and RelaxMap and compare the average overall runtime
(Section 5.4). Our results in this section answer these questions in the affirmative:
Communities identified by the proposed RelaxMap and PriorMap match the quality of
the state-of-the-art, RelaxMap achieves 70% parallel efficiency (eight-way parallelism)
in the machines tested, and PriorMap is 1.2–1.5 times more efficient than RelaxMap
in most cases.

5.1. Experimental Setup

5.1.1. Algorithms. We compare RelaxMap and PriorMap against Infomap, the state-of-
the-art serial algorithm to optimize the map equation [Rosvall et al. 2009]. We used the
open-source implementation of Infomap from Rosvall et al. (www.mapequation.org). We
implemented RelaxMap and PriorMap2 using OpenMP [OpenMP Architecture Review
Board 2008] for shared memory parallel environments, and ran both parallel algo-
rithms with up to p concurrent threads, where p is the number of cores on the test
machine.

5.1.2. Datasets. We used three different benchmark graphs from a standard clustering
benchmark network generator, directNet [Lancichinetti et al. 2008] to evaluate clus-
tering when a planted partition of a graph is available to evaluate against. We follow
the parameters given by Lancichinetti and Fortunato [2009, Section VI-A] to generate
graphs of 1,000, 5,000, and 10,000 vertices with “small” communities between 10 and
50 vertices each with different mixing parameters. We also generate larger benchmark
graphs of 50k, 100k, 200k, 400k, and up to 3 million (directNet-3M) vertices with com-
munities between 20 and 1,000 vertices with 0.5 mixing parameter in order to evaluate
weak-scale parallel performance of the proposed algorithms. The benchmark graphs
are generated based on the planted l-partition model [Condon and Karp 2001], so we
interpret this planted partition of each generated graph as the true community struc-
ture of the graph. We also used six real network datasets from the Stanford Network
Analysis Project (SNAP)3 [Leskovec and Krevl 2014], uk-2002 dataset from Laboratory

2You can find source code for our algorithms at: https://github.com/uwescience/RelaxMap.
3http://snap.stanford.edu/data/index.html.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

file:www.mapequation.org
https://github.com/uwescience/RelaxMap
http://snap.stanford.edu/data/index.html

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:15

Table II. Network Datasets used for Evaluating Parallel RelaxMap and PriorMap Algorithms

Dataset Number of vertices Number of edges Avg. degree Max degree
directNet-1k 1,000 19,849 39.70 69
directNet-5k 5,000 98,313 39.33 69
directNet-10k 10,000 196,414 39.29 69
directNet-50k 50,000 1,013,314 40.53 220
directNet-100k 100,000 2,040,074 40.80 220
directNet-200k 200,000 4,070,634 40.70 220
directNet-400k 400,000 8,152,828 40.76 220
directNet-800k 800,000 16,303,395 40.76 220
directNet-1600k 1,600,000 32,657,712 40.82 220
directNet-3M 3,000,000 61,128,636 40.75 220
web-BerkStan 685,230 7,600,595 22.18 84,290
web-NotreDame 325,729 1,497,134 9.19 10,721
web-Stanford 281,903 2,312,497 16.41 38,626
uk-2002 18,484,117 298,113,762 32.26 194,956
soc-LiveJournal1 4,847,571 68,993,773 28.47 22,887
soc-Pokec 1,632,803 30,622,564 37.51 20,518
Twitter 41,652,230 1,468,365,182 70.51 3,081,112
wiki-Talk 2,394,385 5,021,410 4.19 100,032

for Web Algorithmics4 [Boldi and Vigna 2004], and twitter dataset from the twitter
dataset website5 [Kwak et al. 2010]. You can find a summary of salient properties of
the datasets in Table II, and detailed information on the corresponding websites.

5.1.3. Test Machines. We use three different multicore computers to perform our paral-
lel, shared-memory experiments with RelaxMap. One eight-core machine, Machine-I,
has two Intel Xeon E5420 quad-core processors (2.50GHz, 12MB L2 Cache) and 16GB
of main memory. The 12-core machine, Machine-II, has two six-core Intel Xeon E5-
2430L processors (2.00GHz, 15MB Intel Smart Cache) and 64GB of main memory.
The 60-core machine, Machine-III, has four 15-core Intel Xeon E7-4890v2 processors
(2.80GHz, 37.5MB Intel Smart Cache) and 1TB of main memory.

5.1.4. Experimental Parameters. Except where noted otherwise, all results are based on
the average of 10 experimental runs with different random seeds. The threshold value
τ for the stop condition of iteration is 1e − 3, and the maximum iteration number for
each movement unit (i.e., single-node, aggregated node, or sub-module) is 10.

5.2. Clustering Quality Analysis

In this section, we demonstrate that RelaxMap and PriorMap find clusterings of similar
quality to the original Infomap [Rosvall et al. 2009] algorithm.

We begin with a standard network benchmark, in which benchmark graphs with
known communities are constructed randomly according to a mixing parameter that
describes how likely inter-community edges are among all edges in the benchmark
graph [Lancichinetti and Fortunato 2009]. Given this planted partition, the standard
score for a clustering is its normalized mutual information (NMI) [Danon et al. 2005],
which equals 1 if it produces the exact same communities as the planted partition, and
0 if the all sets are pairwise disjoint. Infomap was determined to be the best-performing
algorithm in an objective third-party benchmark study [Lancichinetti and Fortunato

4http://law.di.unimi.it/datasets.php.
5http://an.kaist.ac.kr/traces/WWW2010.html.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

http://law.di.unimi.it/datasets.php
http://an.kaist.ac.kr/traces/WWW2010.html

32:16 S.-H. Bae et al.

Fig. 6. The average normalized mutual information (NMI) as a function of the mixing parameter comparing
Infomap with (a) RelaxMap or (b) PriorMap for the directNet-5k benchmark dataset, showing high similarity
between RelaxMap, PriorMap, and the serial Infomap algorithm. These overlapping plots describe that the
proposed RelaxMap and PriorMap produce output with the same quality as Infomap. The NMI is a measure of
similarity between each result of the algorithm and the planted partitioning of the corresponding benchmark
graph. The NMI ranges from 0 to 1, with 1 representing an exact match between the planted partition and
the computed cluster. The average NMI scores are almost the same for Infomap, RelaxMap, and PriorMap
using the directNet-5k dataset with single-thread running and eight-way parallel running results. Since the
range of NMI scores are less than 0.02 with all of the tested cases, we ignore the error-bar of each experiment
for visual clarity. We see the same effect at other scales using the directNet-1k and directNet-10k datasets.

2009]; we want to evaluate whether the relaxed consistency model and reduced search
space can achieve similar results.

Figure 6(a) shows the average of the NMI of clusterings produced by Infomap, a serial
version of RelaxMap that runs with only one thread (RelaxMap-1), and RelaxMap
running with eight threads (RelaxMap-8), over 100 runs for graphs generated with
varying mixing parameter. The experimental result for PriorMap, which compares
Infomap, PriorMap-1, and PriorMap-8, is shown in Figure 6(b). The parallel and serial
algorithms achieve the same quality: The proposed algorithms RelaxMap and PriorMap
find clusters with the same NMI as the clusters found by Infomap itself. All are able
to identify the planted partitions with mixing parameter below 0.8. Results are shown
for graphs with 5,000 nodes, but other sizes showed similar results. We conclude that
clusterings identified by RelaxMap and PriorMap in parallel are no worse than those
found by the sequential Infomap algorithm.

We also evaluated real-world datasets as well as the benchmark datasets. Since there
exists no planted partition for the real-world datasets, we cannot assess the accuracy
of the result with an objective metric as we did with NMI for the benchmark networks.
However, since the objective of the algorithm is to minimize the map equation, which
has been shown to give good results on benchmark networks, we compare the shortest
description lengths obtained on the real networks.

Table III compares final output qualities of the eight-way parallel results of Re-
laxMap (RelaxMap-8) and PriorMap (PriorMap-8) algorithms and the Infomap algo-
rithm in terms of the final MDL code length for six real-world datasets in Table II.
In Table III, we show the average, minimum, and maximum of MDL code length from
10 runs of the experiment. As illustrated in Table III, the quality achieved by RelaxMap
and PriorMap is within the error bounds of the Infomap algorithm for most datasets.

In Table III, the results for soc-Pokec dataset are worse than those of other datasets.
Although the absolute quality difference on average is small (about 0.005), it shows that
the RelaxMap algorithm results do not capture the same MDL as the serial algorithm.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:17

Table III. The Final Quality Scores for Infomap, RelaxMap (Eight Threads),
and PriorMap (Eight threads) using the Six Real-World Datasets in Table II.
Each Average, Minimum, and Maximum MDL Score from 10 Different Runs

with Different Random Seeds. All the Values are Rounded Off at 10−3

Dataset Algorithm Average Minimum Maximum
Infomap 9.298 9.297 9.300

web-BerkStan PriorMap-8 9.297 9.295 9.298
RelaxMap-8 9.297 9.294 9.301
Infomap 12.397 12.395 12.402

web-NotreDame PriorMap-8 12.397 12.395 12.398
RelaxMap-8 12.397 12.395 12.399
Infomap 8.577 8.576 8.579

web-Stanford PriorMap-8 8.577 8.575 8.579
RelaxMap-8 8.576 8.574 8.577
Infomap 20.869 20.818 20.923

wiki-Talk PriorMap-8 20.802 20.784 20.819
RelaxMap-8 20.841 20.790 20.889
Infomap 16.894 16.892 16.897

soc-Pokec PriorMap-8 16.899 16.898 16.900
RelaxMap-8 16.899 16.898 16.901
Infomap 15.742 15.740 15.744

soc-LiveJournal1 PriorMap-8 15.741 15.740 15.742
RelaxMap-8 15.741 15.741 15.742

As we mentioned in our previous work [Bae et al. 2013], both single-threaded tests
of RelaxMap and eight-way parallel RelaxMap results from the RelaxMap algorithm
are very similar to each other, so the consistency relaxation feature of our parallel
algorithms is not the cause of the quality difference. Because the number of sub-
modules differs between the two methods, as does the convergence behavior once sub-
modules are computed, subtle implementation differences in how sub-modules are
generated explain the difference in quality.

The convergence patterns of the sequential and eight-way parallel runs for both
the PriorMap and the RelaxMap algorithms are shown in Figure 7 to check whether
the parallelism affects the convergence patterns of both algorithm. Although we
show the convergence pattern of RelaxMap and PriorMap algorithms with only two
datasets in Figure 7, the same patterns happen to the experiments with all the real-
world test datasets in Table II. From this experimental results, we can infer two things:
(1) the prioritization method can achieve the same quality improvement as the non-
prioritized method in each iteration, and (2) the parallel PriorMap, which combines
the relaxed consistency of RelaxMap with the prioritization method, also exhibits the
same quality improvement pattern as the sequential non-prioritized method.

5.3. Parallel Performance Analysis

In Section 5.2, we discussed the output quality of the proposed parallel algorithms
compared to the sequential Infomap algorithm, and showed that the proposed parallel
RelaxMap and PriorMap achieve similar quality to Infomap. In this section, we would
like to analyze parallel performance of the RelaxMap and PriorMap algorithms.

In our previous work [Bae et al. 2013], we compared RelaxMap-1 to Infomap with
respect to the runtime, and it showed that the runtime of RelaxMap-1 is comparable to
the runtime of Infomap, the state-of-the-art serial algorithm. Furthermore, PriorMap-1
is always faster than Infomap/RelaxMap-1 (up to 1.5 times faster) except with the wiki-
Talk dataset because of the efficient “prioritization” approach. Instead of comparing to

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:18 S.-H. Bae et al.

Fig. 7. The MDL values with respect to each iteration for the PriorMap method and the regular full-search
algorithm (RelaxMap) with (a) web-Stanford and (b) soc-LiveJournal1 datasets. These plots clearly show
that the convergence rate of PriorMap is similar to that of RelaxMap in each iteration with both sequential
runs and consistency-relaxed parallel runs.

Fig. 8. The elapsed time of the RelaxMap and PriorMap parallel algorithms on Machine-I with (a) web-
BerkStan and (b) wiki-Talk from Table II using 1–8 threads. With (a) web-BerkStan, the runtimes of both
algorithms with eight-thread are about five times faster than sequential runtimes, and PriorMap is much
faster than RelaxMap with the same number of threads. Other real-world datasets, e.g., web-Stanford, web-
NotreDame, soc-Pokec, and soc-LiveJournal1, also show similar performance patterns as web-BerkStan in (a).
On the other hand, with (b) wiki-Talk dataset, PriorMap does not achieve any benefit from the prioritization
compared to RelaxMap.

the runtime of Infomap, in this article we therefore measure the parallel performance,
such as the speedup and efficiency, of the proposed algorithms based on the sequential
runtime of the corresponding algorithm of each dataset.

Figure 8 refers to the average, minimum, and maximum elapsed times of one-way
through eight-way parallel RelaxMap and PriorMap algorithms with two real-world
test datasets, web-BerkStan and wiki-Talk, on Machine-I. These times correspond to
the experiments of Table III. We can clearly see that both RelaxMap and PriorMap show
performance gains as the degree of parallelism increases with those datasets. Although

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:19

Fig. 9. (a) Parallel speedup of RelaxMap on Machine-II with six real-world datasets in Table II. RelaxMap
achieves about 6.4–7.3 times speedup with social network datasets (in the red rectangle), 4.5–6.3 times
speedup with web-graph datasets (in the blue rectangle), and 2.7 times speedup with wiki-Talk dataset in
12-way parallelism. (b) Relation between Speedup of RelaxMap with 12-way parallelism and the average of
the degree of vertices. (c) Relation between Speedup of Relaxmap with 12-way parallelism and the number
of edges of datasets.

we only show runtimes for web-BerkStan and wiki-Talk in Figure 8, experiments
using eight threads (RelaxMap-8 and PriorMap-8) complete 4–5 times faster than
experiments using one thread (RelaxMap-1 and PriorMap-1) for all web-graph and
social network graphs in Table III as similar as Figure 8(a). Also, Figure 8 shows that
the elapsed times of the prioritized method are about 1.2–1.5 times faster than the
corresponding times of the non-prioritized method, except for the wiki-Talk dataset as
we discuss in Section 5.4, which implies that the proposed prioritization benefits actual
runtime without loss of output quality.

In addition to the parallel runtime analysis, we would like to show the parallel
speedup of RelaxMap. Parallel speedup is a measurement of how much the parallel
execution is faster than the corresponding sequential execution, which can be calcu-
lated as the sequential runtime, Tseq, divided by the parallel runtime, T (p), with p-way
parallel execution: s = Tseq/T (p). Figure 9(a) shows the parallel speedup of RelaxMap
on Machine-II with real-world datasets in Table II. The dotted line means the perfect
linear speedup. RelaxMap achieves fastest (6.4–7.3 times) speedup with social network
datasets (in the red rectangle in Figure 9(a)), 4.5–6.3 times speedup with web-graph
datasets (in the blue rectangle in Figure 9(a)), and least (2.7 times) speedup with
wiki-Talk dataset.

Based on the parallel speedup results in Figure 9(a), which shows a weak correlation
between the types of graphs and speedup, we conclude that other properties of the
networks have affected speedup more than the size of the networks. We assume that
graphs of the same type have some similar properties. From Table II, social network
graphs have higher average degree than web-graph and wiki-Talk datasets, and we
found that the density (or the average degree) of the graphs is more related to the
parallel speedup of the proposed algorithm than the number of edges of the graphs,
as shown in Figure 9(b) and (c). The denser (higher average of degree) graphs tend to
achieve better performance than the sparser (lower average of degree) graphs. Note
that wiki-Talk is much larger than web-Stanford with respect to the number of edges
(or size of the graphs), but the algorithm achieves better speedup with web-Stanford
than with wiki-Talk.

In order to analyze the relation between the parallel speedup of the algorithm and
the average vertex degree of graphs, take two different graphs, say G1(V1, E1) and

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:20 S.-H. Bae et al.

Fig. 10. Parallel speedup of RelaxMap on Machine-III with large real-world datasets in Table II. RelaxMap
achieves up to 17.6 times speedup within 60-core machine without loss of output quality.

G2(V2, E2), where |V1| and |V2| are the number of vertices in which |V1| = |V2|, |E1| and
|E2| are the number of edges in which c ∗ |E1| = |E2|, and c > 1.0. Since the parallel
workloads of RelaxMap are assigned to threads with respect to the number of vertices
in Algorithm 3, the non-parallel portion of RelaxMap is approximately O(|V |) and the
parallel portion is asymptotically O(|E|) in complexity. Thus, the overall runtime of
sequential run of the algorithm is roughly Ts = O(|V |) + O(|E|) and that of parallel
run with p threads is Tp = O(|V |) + O(|E|)/p. Based on these simplified assumptions,
we compare the parallel speedup of G1 and G2, named s1 and s2, correspondingly.
s1 = T 1

s /T 1
p and s2 = T 2

s /T 2
p , where p > 1, so we compare s1 and s2 by calculating

s1 − s2 as follows (where O(|V1|) = O(|V2|) = α, O(|E1|) = β, and O(|E2|) ≈ cβ):

s1 − s2 = O(|V1|) + O(|E1|)
O(|V1|) + O(|E1|)/p

− O(|V2|) + O(|E2|)
O(|V2|) + O(|E2|)/p

= α + β

α + β/p
− α + cβ

α + cβ/p

= p(1 − p)(c − 1)αβ

(pα + β)(pα + cβ)
< 0.

This asymptotic analysis confirms that the proposed algorithms will perform higher
speedup with the graphs with higher average degree of vertices than with the graphs
with lower average degree. Note that other properties, such as the skewness of edge
distribution, also affect the speedup as well as the average degree. For instance, if two
graphs have the same number of vertices and edges, then one with lower skewness
would have higher speedup since the algorithms achieve better load balance with it
than the other graph.

We also performed parallel performance experiments on Machine-III, which has four
CPUs of 15 cores with hyper-threading technology and 1TB of main memory. Figure 10
shows the parallel speedup of RelaxMap on Machine-III with large real-world datasets,
including twitter dataset which has billions of edges. Dotted line in Figure 10 represents
the perfect speedup. Due to the long running time, we run three times with twitter
dataset for each degree of parallelism and each run was limited to four “Super-Steps.”

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:21

As shown in Figure 10, RelaxMap achieves speedup gradually as the number of
threads increases. Since the parallel overhead increases as the degree of parallelism
increases, the gap between the perfect speedup and the actual speedup is also increased
as the degree of parallelism increases. In Figure 10, the algorithm achieved up to 17.6
times speedup when the degree of parallelism is 60, without loss of output quality.
Although the speedups on soc-Pokec and soc-LiveJournal1 are almost identical each
other, that is co-incidental; the runtimes are very different on each other and the
speedups on them are different in Figure 9(a). As we discussed above, the parallel
speedup of RelaxMap is more related to the average degree and the skewness than
the number of edges, so that uk-2002 dataset shows the least speedup though it is the
second largest dataset among tested datasets in Figure 10. Since the CPUs in Machine-
III support hyper-threading technology, we also tested RelaxMap with 120 threads
on Machine-III. The experimental result shows that the hyper-threading technology
benefits to the parallel performance of the algorithm in general, but not in every case
as shown in twitter case in Figure 10.

Here, we investigate why the RelaxMap algorithm does not get benefits of hyper-
threading with the twitter dataset. Since we doubled the number of threads from 60
to 120 threads, the lock-contention chance would also double asymptotically. To make
matters worse, hyper-threading does not increase the actual number of physical cores,
but two threads share a physical core. Thus, roughly each thread uses only a half
of each physical core; the module information updating time would increase twice
or more since the module information updating part is inside of the locking mecha-
nism in Algorithm 3. In our experiments, when the algorithm used hyper-threading on
Machine-III explicitly by launching 120 threads, it increased the lock-contention for
updating the module information, which is represented in lines 3–5 of Algorithm 3,
especially at the first iteration, when almost all vertices are getting into the instant
updating part. This lock-contention with hyper-threading would be worse if the data
is larger and/or more skewed, and the twitter dataset is the largest and the most
skewed among the tested datasets in Figure 10. We found that the runtimes inside
of the locking mechanism in Algorithm 3 with 120 threads increased compared to
the corresponding runtimes with 60 threads with all datasets in Figure 10, and the
time increased more than twice with twitter so that hyper-threading made poor per-
formance with the twitter dataset in Figure 10. While benefits of hyper-threading in
other parts of the proposed algorithm could catch up the performance loss with other
datasets so that RelaxMap achieved a slight improvement of the overall speedup, the
benefits could not cover the performance loss for the twitter case.

The Parallel efficiency ε of an algorithm compares the parallel runtime to the best
possible runtime assuming perfect scalability. Thus, we calculate the parallel efficiency
of the proposed algorithms to analyze the scalability of them. Equation (3) is the
equation of the parallel efficiency:

ε = Tseq

pT (p)
, (3)

where p is the number of parallel units, T (p) is the time with p parallel units, and Tseq
is the time of the sequential version.

Figure 11 illustrates the parallel efficiency of the RelaxMap and PriorMap algorithms
with real-world datasets in Table II on Machine-I (a) and Machine-II (b), respectively.
In Figure 11, both algorithms show 50–70% parallel efficiency for eight-way paral-
lelism on both Machine-I and Machine-II with soc-Pokec and web-BerkStan datasets.
This parallel efficiency offers a significant improvement in runtime over the state-
of-the-art. In addition, the PriorMap algorithm is about 1.2–1.5 times more efficient

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:22 S.-H. Bae et al.

Fig. 11. Parallel efficiency of the PriorMap and RelaxMap algorithms on Machine-I and Machine-II with
soc-Pokec and web-BerkStan datasets in Table II. As can be seen in this figure, each PriorMap efficiency
result is comparable to the corresponding RelaxMap efficiency result.

Fig. 12. The parallel efficiency of the PriorMap and RelaxMap algorithms on Machine-I with benchmark
datasets in Table II. Even though the graph size is relatively small (|V | ≤ 10,000), both algorithms show very
high efficiency. Both algorithms achieve 85% efficiency in eight-way parallelism with 5k and 10k benchmark
datasets.

in sequential experiments than the RelaxMap algorithm, and it still achieves similar
parallel efficiency to the RelaxMap algorithm as shown in Figure 11.

The parallel efficiency of the proposed PriorMap and RelaxMap algorithms on
Machine-I with benchmark datasets in Table II is shown in Figure 12. Since the
benchmark datasets are much smaller datasets compared to real-world datasets as
in Table II, we expected that the parallel efficiency of the proposed algorithms using

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:23

Fig. 13. The weak-scale parallel efficiency of RelaxMap on Machine-III with large benchmark datasets, from
50k to 3M vertices in Table II. As the degree of parallelism increases, we vary the dataset size proportionally.
RelaxMap shows about 35% weak-scale efficiency with 60-way parallelism.

small benchmark datasets to be lower than with real-world datasets. However, the par-
allel efficiency of both RelaxMap and PriorMap with 5k and 10k benchmark datasets
is about 85% in eight-way parallelism in Figure 12, which is higher than the real-
world datasets. Also, we found that the PriorMap is about 1.2–1.3 times faster than
the RelaxMap in our experimental results of 100 runs, even with small benchmark
datasets.

The maximum degrees of the benchmark datasets are much smaller than those of
real-world datasets. As a consequence, the edge degree distributions of the benchmark
datasets show low variances and those of the real-world datasets are high variances.
Since the work to find a new community for each vertex (a.k.a. bestNewModule()
function in Algorithm 3 and Algorithm 4) is proportional to the degree of the vertex,
the work for each vertex in the benchmark datasets is more uniform than in real-world
datasets, which may result in better load-balancing when scheduling work among
processors and correspondingly better parallel efficiency.

To quantify scalability, we compute the weak-scale parallel efficiency. Weak-scale
parallel efficiency is measured by comparing the average runtime of p-way parallel
execution of p × w workloads, tpw, with the average runtime of sequential execution
of w workloads, tw. If tpw = tw, then the algorithm achieve 1.0 weak-scale parallel
efficiency. The definition of weak-scale parallel efficiency εw is given in the following
equation:

εw = tw
tpw

. (4)

In Figure 13, we show weak-scale parallel efficiency with the benchmark graphs of
50k, 100k, 200k, 400k, and up to 3M vertices in Table II on Machine-III. Note that,
although the workload is roughly proportional to the number of edges, it is sensitive
to the non-deterministic features of the algorithm. Also, it is not expected to achieve
perfect scaling since there is a non-trivial sequential portion of the parallel algorithm,
and the algorithm runtime depends on the degree distribution of the input graph.
RelaxMap achieved about 35% weak-scale efficiency on a 60-times larger graph with
60-way parallelism in Figure 13, which is good weak-scale performance for a com-
plex parallel algorithm like RelaxMap, as we tested on big benchmark datasets, from

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:24 S.-H. Bae et al.

50k to 3M vertices in Table II with sequential, 2-way, and up to 60-way parallelism,
correspondingly.

5.4. Prioritization Performance Analysis

We have motivated our choice of prioritization strategy in Section 4.1; we now measure
the performance improvement realized by applying it.

Figure 14 shows the effectiveness of the prioritization method by comparing the time
cost per unit MDL improvement, t/�MDL, for the first 10 iterations. Since each graph
shows the time for unit MDL improvement, the lower value means that an algorithm
uses time more effectively to improve the output quality. For all datasets, the proposed
prioritized method (prioritized) runs much more efficiently than the original full-search
method (non-prioritized), except in the case of the wiki-Talk dataset in Figure 14(d).
Specifically, the prioritized method maintains a relatively low time cost per unit of MDL
improvement throughout the computation in contrast to the non-prioritized method.

For the first few iterations, both the prioritized method and the non-prioritized
method provide similar effectiveness in Figure 14. This is natural since a lot of ver-
tices are moved during this period, so most of vertices are neighbors of a moved vertex,
and therefore activated by the algorithm. However, in later iterations, most of the
vertices “settle down” in their final communities. Thus, in later iterations, the priori-
tized method will activate far fewer vertices than the non-prioritized algorithm, which
results in using much less time but still covers similar quality improvements.

For wiki-Talk dataset, the prioritized method shows similar effectiveness per itera-
tion in contrast to the other datasets, in Figure 14(d). The reason is that the algorithms
converged in three iterations with wiki-Talk dataset for the first super-step, so the pri-
oritization does not significantly benefit the elapsed time with the dataset.

In Section 5.2, we have shown the overall convergence rate of the prioritized and the
non-prioritized methods in Figure 7. In fact, our experiments show that the convergence
rate of the prioritized method is the same as the non-prioritized full-search method but
performs significantly less work.

Figure 15 illustrates the relative speedup of the prioritized method across several
datasets. The horizontal dashed line represents a speedup of 1.0. The prioritized
method is about 1.2–1.5 times faster than non-prioritized method with one thread.
With eight-way parallel experiments, the relative speedup slightly reduced from 1.5 to
around 1.35 for small datasets but remains the same as the sequential runs for the
experiments with larger datasets (soc-LiveJournal1 and soc-Pokec).

In Figure 15, the prioritized method does not show better efficiency compared to non-
prioritized method for wiki-Talk dataset, in contrast to the other experiments. About
94% of the vertices in the wiki-Talk dataset are “dangling:” they have no outgoing edges.
With lots of dangling vertices, the algorithm converges in just a few iterations for each
super-step; there are not enough opportunities for the algorithm to significantly prune
the search space. With eight-way parallelism, the prioritized method in fact slows down
the runtime; we found that the prioritized method requires more super-steps than the
non-prioritized method, for wiki-Talk dataset. However, the prioritized method appears
to produce more stable outputs than non-prioritized runs, as shown in Table III.

6. RELATED WORK

Several parallel community detection algorithms have been proposed. A well-known
metric for community detection problem is modularity [Newman and Girvan 2004],
and the modularity maximization method [Clauset et al. 2004] is one of the most-used
algorithms for determining community structure. Riedy et al. [2011, 2012] worked on
parallel modularity maximization algorithm under shared-memory many-core environ-
ments. Although this work achieves benefits from the parallelism and handles graphs

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:25

Fig. 14. The effectiveness of the prioritization method and non-prioritized method with six real-world
datasets in Table II. In each plot, the x-axis represents the iteration number in the first super-step and
the y-axis is the time per unit MDL improvement (t/�(MDL)). Although the runtime would depend on the
complexity of each dataset, the prioritization method is much more effective than the non-prioritized method
on all of the tested datasets, except wiki-Talk dataset.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:26 S.-H. Bae et al.

Fig. 15. The relative speedup of prioritized method vs. non-prioritized method with one-thread runs and
eight-thread parallel runs in terms of real-world datasets in Table II on Machine-I. All of the cases show that
the prioritized method is about 1.2–1.5 times faster than the non-prioritized method, except with wiki-Talk
dataset. Since both algorithms converge in a few iterations for each super-step with wiki-Talk dataset, the
prioritized method will not benefit from pruning the search space.

with billions of edges, it still has the “resolution limit” problem since it is a modularity
optimization method, and multiple third-party benchmarks have shown that Infomap
delivers better quality results. Also, Fagginger Auer and Bisseling [2013] proposed a
graph coarsening method for a modularity based graph clustering and fine-grained
shared memory parallel algorithm for multicore CPUs and GPUs systems. Although
the algorithm scales well for large graphs, a parallel local refinement method is missing
from the algorithm due to the difficulty of parallelization.

The Louvain method [Blondel et al. 2008] is a well-known modularity maximization
community detection algorithm, which utilizes aggregation step efficiently. Recently,
Bhowmick and Srinivasan proposed a shared-memory parallel template for the Louvain
method [Bhowmick and Srinivasan 2013]. The parallel Louvain method is a similar
methodology to the proposed RelaxMap algorithm, which searches new communities in
parallel but updates the search results under critical section to guarantee the correct-
ness of the algorithm. The parallel Louvain method achieves similar modularity score
as in sequential with the benefit of parallel execution. However, the parallel Louvain
method is a modularity-based algorithm, which is a structure-based community detec-
tion algorithm, but the RelaxMap algorithm optimizes the map equation, which is a
network flow-based community detection method. Also, Staudt and Meyerhenke [2015]
proposed several shared-memory parallel community detection algorithms for undi-
rected graphs: Parallel Label Propagation (PLP), Parallel Louvain Method (PLM), Par-
allel Louvain Method with Refinement (PLMR), and Ensemble Preprocessing (EPP).
PLP is based on the label propagation method, and the other algorithms optimize mod-
ularity for finding community structure. The implementations of these algorithms are
published as a component of NetworKit [Staudt et al. 2014].

Zhang et al. [2009] proposed another metric for community detection called propin-
quity and provided an associated parallel algorithm based on this metric. By utilizing
an incremental design for the propinquity calculation, which avoids unnecessary re-
calculation of the propinquity values per each iteration, they achieved better efficiency
in parallel than without applying incremental design.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:27

Since the above algorithms use a different objective function for evaluating communi-
ties, we did not perform any experimental evaluation between the proposed algorithms
and the algorithms in this article.

Niu et al. suggested an interesting lock-free scheme for parallel stochastic gradient
descent (SGD) algorithms, called HogWild! [Niu et al. 2011]. In their paper, Niu et al.
proved that the HogWild! approach will converge in optimal ratio, which is similar
to its original algorithm, given a sparse dataset, although the HogWild! approach
allows overwrites on decision variables for the SGD optimization due to not using lock
mechanism in shared memory parallelism. Since most of the real network graphs are
usually sparse, in this article, we proposed a parallel flow-based community detection
algorithm in terms of the map equation [Rosvall et al. 2009] metric, by applying lock-
free scheme as similar as HogWild! for SGD algorithms.

Zhang et al. [2011] proposed a distributed framework for the fast convergence of
iterative computation, called PrIter. In contrast to working all data in each iteration,
PrIter supports prioritized iterations, which enable it to achieve much faster con-
vergence. They experimented PrIter with several iterative graph algorithms, such as
single source shortest path, pagerank, and connected components, and PrIter shows
significant performance gains on those algorithms by the prioritized iteration scheme.

A fast modularity-based community detection algorithm was presented by Shiokawa
et al. [2013]. For avoiding high computation cost on the modularity-based community
detection algorithm, they used incremental aggregation, incremental pruning, and
reordering of vertex selections. Based on those key ideas, Shiokawa et al. [2013] can
partition large graphs, such as a graph with a few billion edges. This results implies that
searching all vertices in each iteration is inefficient in modularity-based community
detection.

In addition, Liu and Murata [2010] proposed an algorithm that avoids the local
optima problem of a modularity-specialized label propagation algorithm. The authors
briefly mentioned that the algorithm could be sped up by only updating the labels of
vertices whose neighbors were updated before, though they did not provide any detailed
performance evaluation on the prioritized method.

Most of community detection algorithms search for a new community for each vertex
based on the vertex’s neighbors’ status. Thus, in many cases, a community detection
algorithm may not need to search for a new module for a vertex, if none of its neighbors
has been updated since it was assigned to the current community. Based on this simple
idea, we proposed a prioritized method for the flow-based community detection with
respect to the map equation in this article to improve the algorithm’s efficiency.

7. CONCLUSION AND FUTURE WORK

We proposed a new parallel flow-based community detection algorithm called
RelaxMap. Due to the original algorithm’s sequential and dependent nature, it is diffi-
cult to directly implement an efficient parallel algorithm with identical behavior. The
proposed algorithm relaxes the consistency model to allow several vertex moves to
be considered in parallel before synchronizing. We assume, and experimentally verify,
that conflicts do not arise frequently due to graphs typically being sparse. Empirically,
we show the convergence rate of the RelaxMap algorithm is as fast as the original
sequential algorithm.

In addition to the fast convergence rate, our proposed parallel algorithm achieves
similar quality to the sequential algorithm, and achieves acceptable parallel efficiency
in multiple experimental environments. With eight-way parallelism, we achieved about
50–70% parallel efficiency with real-world datasets and about 85% parallel efficiency
with benchmark datasets. When we tested the algorithm with 60-way parallelism, the
proposed algorithm achieved 17.6 times speedup without loss of output quality.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

32:28 S.-H. Bae et al.

We also introduced an efficient flow-based community detection algorithm, which
utilizes prioritization method, and applied the prioritization to the RelaxMap par-
allel algorithm. The proposed algorithm achieves better efficiency by reducing un-
necessary investigation. The prioritization method is up to 1.5 times faster than the
non-prioritization method without loss of the quality of the outputs, and still achieves
highly efficient parallelism. Since the relaxation and prioritization methods are general
ideas, we believe the proposed methods are applicable to other community detection
algorithms for improving their efficiency and scalability.

For future work, we would like to extend the proposed prioritized RelaxMap parallel
algorithm to parallelizing hierarchical community detection algorithms and commu-
nity detection algorithms for dynamic networks.

ACKNOWLEDGMENTS

We would like to thank Andrea Lancichinetti for the synthetic graph generator. The authors would also like
to thank the anonymous reviewers for their insightful comments.

REFERENCES

Rodrigo Aldecoa and Ignacio Marı́n. 2013. Exploring the limits of community detection strategies in complex
networks. Scientific Reports 3, 2216 (2013). DOI:10.1038/srep02216

Seung-Hee Bae, Daniel Halperin, Jevin West, Martin Rosvall, and Bill Howe. 2013. Scalable flow-based
community detection for large-scale network analysis. In Proceedings of 2013 IEEE 13th International
Conference on Data Mining Workshops (ICDMW’13). IEEE, 303–310.

Sanjukta Bhowmick and Sriram Srinivasan. 2013. A template for parallelizing the Louvain method for
modularity maximization. In Dynamics On and Of Complex Networks, Volume 2. Animesh Mukherjee,
Monojit Choudhury, Fernando Peruani, Niloy Ganguly, and Bivas Mitra (Eds.). Springer, New York, NY,
111–124. DOI:http://dx.doi.org/10.1007/978-1-4614-6729-8_6

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10
(2008), P10008.

Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph framework I: Compression techniques. In Proc. of
the Thirteenth International World Wide Web Conference (WWW’04). ACM, Manhattan, 595–601.

Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual web search engine. Com-
puter Networks and ISDN Systems 30, 1 (1998), 107–117.

Aaron Clauset, Mark E. J. Newman, and Cristopher Moore. 2004. Finding community structure in very large
networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 70, 6 (2004), 066111.

Anne Condon and Richard M. Karp. 2001. Algorithms for graph partitioning on the planted partition model.
Random Structures and Algorithms 18, 2 (2001), 116–140.

Leon Danon, Albert Diaz-Guilera, Jordi Duch, and Alex Arenas. 2005. Comparing community structure
identification. Journal of Statistical Mechanics: Theory and Experiment 2005, 9 (2005), P09008.

Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu, and Geoffrey
Fox. 2010. Twister: A runtime for iterative mapreduce. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing. ACM, 810–818.

Bas Fagginger Auer and Rob H. Bisseling. 2013. Graph coarsening and clustering on the GPU. In Graph Par-
titioning and Graph Clustering: 10th DIMACS Implementation Challenge Workshop, vol. 588. American
Mathematical Society.

Santo Fortunato and Marc Barthélemy. 2007. Resolution limit in community detection. Proceedings of the
National Academy of Sciences 104, 1 (Jan. 2007), 36–41. DOI:http://dx.doi.org/10.1073/pnas.0605965104

Anne-Claude Gavin, Patrick Aloy, Paola Grandi, Roland Krause, Markus Boesche, Martina Marzioch,
Christina Rau, Lars Juhl Jensen, Sonja Bastuck, Birgit Dümpelfeld, and others. 2006. Proteome survey
reveals modularity of the yeast cell machinery. Nature 440, 7084 (2006), 631–636.

Michelle Girvan and Mark E. J. Newman. 2002. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences 99, 12 (2002), 7821–7826.

David F. Gleich and Leonid Zhukov. 2005. Scalable computing with power-law graphs: Experience with
parallel PageRank. In Proceedings of 2005 IEEE SuperComputing Conference (Poster).

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

http://dx.doi.org/10.1007/978-1-4614-6729-8_6
http://dx.doi.org/10.1073/pnas.0605965104

Scalable and Efficient Flow-Based Community Detection for Large-Scale Graph Analysis 32:29

Roger Guimera and Luis A. Nunes Amaral. 2005. Functional cartography of complex metabolic networks.
Nature 433, 7028 (2005), 895–900.

Roger Guimerà, Marta Sales-Pardo, and L. A. N. Amaral. 2004. Modularity from fluctuations in random
graphs and complex networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 70, 2
(2004), 025101(R). DOI:http://dx.doi.org/10.1103/physreve.70.025101

Tatsuro Kawamoto and Martin Rosvall. 2015. Estimating the resolution limit of the map equation in commu-
nity detection. Phys. Rev. E 91, 1 (Jan. 2015), 012809. DOI:http://dx.doi.org/10.1103/PhysRevE.91.012809

Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a
news media?. In Proceedings of the 19th International Conference on World Wide Web (WWW’10). ACM,
New York, NY, 591–600. DOI:http://dx.doi.org/10.1145/1772690.1772751

Andrea Lancichinetti and Santo Fortunato. 2009. Community detection algorithms: A comparative analysis.
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 80 (2009), 056117.

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark graphs for testing community
detection algorithms. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 78, 4 (2008),
046110.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. (2014).
Retrieved June 2014 from http://snap.stanford.edu/data.

Jure Leskovec, Kevin J. Lang, and Michael Mahoney. 2010. Empirical comparison of algorithms for network
community detection. In Proceedings of the 19th International Conference on World Wide Web (WWW’10).
ACM, New York, NY, 631–640. DOI:http://dx.doi.org/10.1145/1772690.1772755

Xin Liu and Tsuyoshi Murata. 2010. Advanced modularity-specialized label propagation algorithm for de-
tecting communities in networks. Physica A: Statistical Mechanics and its Applications 389, 7 (2010),
1493–1500.

Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein.
2012. Distributed GraphLab: A framework for machine learning and data mining in the cloud.
In Proceedings of the VLDB Endowment 5, 8 (Apr. 2012), 716–727. http://dl.acm.org/citation.
cfm?id=2212351.2212354

Padmanabhan K. Menon, Gregory D. Sweriduk, and Karl D. Bilimoria. 2004. New approach for modeling,
analysis, and control of air traffic flow. Journal of Guidance, Control, and Dynamics 27, 5 (2004), 737–744.

Mark E. J. Newman and Michelle Girvan. 2004. Finding and evaluating community structure in networks.
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 69, 2 (2004), 026113.

Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. 2011. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS. http://books.nips.cc/papers/files/nips24/NIPS2011_
0485.pdf.

OpenMP Architecture Review Board. 2008. OpenMP Application Program Interface Version 3.0. (2008).
Retrieved May 2008 from http://www.openmp.org/mp-documents/spec30.pdf.

E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A Bader. 2011. Parallel community detection
for massive graphs. In Proceedings of the 9th International Conference on Parallel Processing and Applied
Mathematics – Volume Part I. Springer-Verlag, Berlin Heidelberg, 286–296.

Jason Riedy, David A. Bader, and Henning Meyerhenke. 2012. Scalable multi-threaded community detection
in social networks. In Proceedings of the 2012 IEEE 26th International on Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW’12). IEEE, 1619–1628.

Martin Rosvall, Daniel Axelsson, and Carl T. Bergstrom. 2009. The map equation. The European Physical
Journal Special Topics 178, 1 (2009), 13–23.

Martin Rosvall and Carl T. Bergstrom. 2011. Multilevel compression of random walks on networks reveals
hierarchical organization in large integrated systems. PLoS One 6, 4 (2011), e18209.

Martin Rosvall, Alcides V. Esquivel, Andrea Lancichinetti, Jevin D. West, and Renaud Lambiotte. 2014.
Memory in network flows and its effects on spreading dynamics and community detection. Nature
Communications 5 (2014). DOI:10.1038/ncomms5630

Claude Elwood Shannon. 1948a. A mathematical theory of communication. The Bell System Technical Jour-
nal 27, 3 (Jul. 1948), 379–423.

Claude Elwood Shannon. 1948b. A mathematical theory of communication. The Bell System Technical Jour-
nal 27, 4 (Oct. 1948), 623–656.

Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2013. Fast algorithm for modularity-based
graph clustering. In Proceedings of the 27th AAAI Conference on Artificial Intelligence. 1170–1176.

C. Staudt and H. Meyerhenke. 2015. Engineering parallel algorithms for community detection in mas-
sive networks. IEEE Transactions on Parallel and Distributed Systems, 27, 1 (2016), 171–184.
DOI:http://dx.doi.org/10.1109/TPDS.2015.2390633

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

http://dx.doi.org/10.1103/physreve.70.025101
http://dx.doi.org/10.1103/PhysRevE.91.012809
http://dx.doi.org/10.1145/1772690.1772751
http://snap.stanford.edu/data
http://dx.doi.org/10.1145/1772690.1772755
http://dl.acm.org/citation. ignorespaces cfm?id$=$2212351.2212354
http://dl.acm.org/citation. ignorespaces cfm?id$=$2212351.2212354
http://books.nips.cc/papers/files/nips24/NIPS2011_ ignorespaces 0485.pdf
http://books.nips.cc/papers/files/nips24/NIPS2011_ ignorespaces 0485.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.1109/TPDS.2015.2390633

32:30 S.-H. Bae et al.

Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2014. NetworKit: A Tool Suite for Large-
scale Complex Network Analysis. arXiv:1403.3005, https://arxiv.org/abs/1403.3005.

Jevin D. West, Theodore C. Bergstrom, and Carl T. Bergstrom. 2010. The eigenfactor metricsTM: A network
approach to assessing scholarly journals. College & Research Libraries 71, 3 (2010), 236–244.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael
Franklin, Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, 2.

Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. 2011. Priter: A distributed framework for prior-
itized iterative computations. In Proceedings of the 2nd ACM Symposium on Cloud Computing. ACM,
13.

Yuzhou Zhang, Jianyong Wang, Yi Wang, and Lizhu Zhou. 2009. Parallel community detection on large
networks with propinquity dynamics. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 997–1006.

Received December 2014; revised June 2016; accepted August 2016

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 3, Article 32, Publication date: March 2017.

https://arxiv.org/abs/1403.3005

