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Abstract

Replication surveys are becoming a standard tool for assessing the knowledge pro-
duction of scientific disciplines. In psychology, economics, and preclinical cancer biology,
replication rates near 50% have been advanced as evidence that these disciplines have
failed to reliably produce knowledge, are rife with questionable research practices, and
warrant reform. Concerns over failed replications are sometimes leveraged to erode faith
in science, even claiming that the majority of published research is false. Even when
quantitatively grounded, the assumptions underlying such claims are highly restrictive;
for example, the effect sizes are fixed across empirical contexts, and null hypotheses of
exactly zero effect are assumed to have a high probability of being true. Here we derive
a theoretical model of the publication process that relaxes these assumptions. Account-
ing for variation in observed effect sizes across empirical settings and acknowledging that
most treatments have some effect—even if small and idiosyncratic—we find that aggregate
measures of replication rates provide little insight into whether a scientific discipline is
productive. Applying our model to data from large-scale replication surveys, suggest that
concerns over the reliability of scientific research may be overstated. We highlight how
proposed reforms may be ineffective at improving replicability and worse yet, detrimental
to broader measures of scientific productivity.
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Surveys across multiple disciplines have demonstrated that a large portion of statistically1

significant findings fail to achieve significance upon replication [1, 2, 3]. Such findings are often2

taken as evidence that something is rotten in the state of science: either the vast majority of3

attempted research generates negative results that go unpublished, or researchers often engage4

in questionable research practices (QRPs) such as outcome switching, harking, p-hacking, or5

uncorrected multiple comparisons to achieve significant results [4, 5]. Some researchers have6

argued that many or even most published scientific findings are false positives [6].7
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The past decade’s focus on replication rates has propelled a much-needed conversation around8

questionable research practices and how to avoid them. It has also spurred an ongoing dis-9

cussion about best practices with respect to assessing and reporting statistical significance.10

Moreover, it has profoundly impacted the process and perception of science, not always for the11

better. In attempting to correct the record, substantial resources have been routed towards12

conducting replications in lieu of pursuing novel research agendas. Failed replications of es-13

tablished findings can make a splash, reducing the public’s faith in those results in particular14

and in science more generally [7]. Within academia, low rates of replication have been argued15

to indicate that some disciplines have “failed beyond repair”, jeopardizing future funding and16

research [8]. Individual authors of research that fails to replicate can face personal or profes-17

sional consequences ranging from disparagement to harassment to irreparable career damage18

[9, 10]. Promising evidence-based interventions may be shelved or delayed following a failed19

replication.20

How can we reconcile a preponderance of statistically significant findings in the published21

literature with the low rates of success reported in replication studies? One possible explana-22

tion is that the vast majority of attempted research goes unpublished because the findings are23

non-significant. This is the so-called file drawer effect [11]. The magnitude of the file drawer24

effect depends on the nature of the hypotheses that researchers choose to test—the less likely25

they are to be correct a priori, the larger the file drawer. In psychology, replication rates26

have lead researchers to infer that researchers are testing hypotheses that are unlikely em a27

priori—with prior probabilities as low as 10% [4, 12]. We find this explanation implausible.28

On average, newly-hired assistant professor in psychology has 16 publications, many or all29

of which contain multiple experiments or hypothesis tests [13]. Yet negative results compose30

only a small fraction of the published literature across disciplines and in social psychology31

in particular [14]. If only one experiment in ten proved successful, amassing this quantity32

of positive results would require an impractical expenditure of effort and resources in a very33

short period of time, and an exceptionally large file drawer. Furthermore, evidence from reg-34

istered reports is inconsistent with the 10% prior probability scenario: approximately 40% of35

registered reports achieve significance—suggesting a file-drawer size on the order of 1 to 1.536

times the size of the published scientific record[15, 16].37

An alternative explanation is that false positives arise from researchers intentionally or inad-38

vertently adopting QRPs that lead to inappropriate rejection of the null hypothesis [17]. A39

QRP-based interpretation of the replication crisis aligns with the strong incentives to compile40

a competitive CV. However, in such a world, honest researchers with basic statistical training41

would be a rarity, filtered out by a job market where paper tallies matter.42

Whatever the explanation for failed replications, the past decade has seen a movement toward43

scientific reforms seek to improve transparency and publish null results, reducing incentives to44

engage in QRPs and thereby improve replication [18]. These range from preregistration and45

registered reports, to improving theory prior to experimentation or strengthening thresholds46

for significance [12]. While many of these proposed reforms have the potential to convey47

considerable benefits, they are unlikely to come without costs—particularly if imposed indis-48

criminately. Preregistration, for example, may incentivize researchers to stick with previously-49

specified models, regardless of whether or not more appropriate models become clear once the50

data are acquired. Registered reports may limit exploratory research and discourage novel or51

high-risk approaches [19]. Overall, these reforms risk redefining quality science in a manner52

that prioritizes some forms of quantitative inquiry over others.53
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The core concern in the so-called replication crisis is that low replication rates in a field54

indicate that the field is likely to be publishing a large number of incorrect findings. But such55

arguments tend to rely on two assumptions: (1) that effect sizes of interest are fixed across56

contexts and (2) that point-null hypotheses (e.g., that the actual effect of a manipulation57

is exactly zero) have a meaningful probability of being true [6]. Critically, this implies that58

effects vary solely due to measurement error and are not mediated or biased by context or59

statistical modeling decisions. Such arguments simply ignore the well-established fact that60

effects vary across experimental contexts beyond what would be expected by measurement61

error alone [20, 21, 22, 23, 24, 25]. Similarly, the notion that true effect sizes can be precisely62

zero is not grounded in reality. Rather, it is a mathematical convenience that facilitates the63

calculation of sampling distributions—a relic of a pre-digital era. Given the centrality of64

replication to our appraisal of scientific progress and reform, we would do well to consider the65

data around replication in light of the fact that these two assumptions are often unrealistic.66

Results

Motivation67

The assumptions we have just described have been inherited from the null hypothesis sig-68

nificance testing framework. Together, they have had an instrumental role in launching and69

framing conceptions of scientific productivity and reform. Interest in the replication crisis has70

largely centered around a formal model designed to estimate the probability a result is true,71

conditioned on significance [6, 26]. According to this approach, p-values inherently evaluate72

the plausibility of the data given some null model, M , often with an effect size d equal to73

precisely zero (e.g., Pr(data | M,d = 0)). Informally though, scientists rely on (or misin-74

terpret) p-values as evidence that the null model can be rejected in favor of the alternate75

hypothesis Ha that d 6= 0. These are not the same, as the probability of significance (+)76

given the null hypothesis H0 is not the probability of the null hypothesis, given significance,77

i.e, P (H0 | +) 6= P (+ | H0). Bayes’ rule makes it possible to estimate the probability that an78

alternate hypothesis is True, given significance was observed [26, 6]:79

Pr(Ha | +) =
Pr(+|Ha)Pr(Ha)

Pr(+|Ha)Pr(Ha) + Pr(H0)Pr(+|H0)
(1)

Here, Pr(+|Ha) is the power of an experiment, and Pr(+|H0) is the threshold for significance,80

typically 0.05. Moreover, this calculation requires an additional piece of information: the81

prior probability of the hypothesis being True, Pr(Ha). Intuitively, a highly improbably82

hypothesis is likely be a false positive even when significance is achieved. Using this model,83

an adequately powered study with 80% power that is significant at p < .05 with a 10% a84

priori chance of being True would nonetheless have a 36% chance of being a False claim.85

Similar calculations can be used to evaluate evidence subsequent to a replication effort, using86

the posterior probability from the first study as the prior probability for the replication. A87

successful high-powered (95%) replication at p < .001 for the study described above would88

yield a 99.99% chance the study is True, while a failed replication would render an 2.7%89

chance. This is the ostensible power of replications—the ability to forge an uncertain finding90
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into reliable knowledge. On the strength of this claim we’ve been sold the obverse, a very91

different claim: that failures to replicate a study suggest that its findings are false. From92

there, the argument goes, the fact that a large portion of attempted replications fail must93

mean that much of the published literature is false. Under this model, replication truly makes94

sense as a cornerstone of scientific inquiry, and we are in crisis.95

Further, this framing implies that arbitrary study with a similar prior probability of be-96

ing true, power, and significance threshold would only observe significance ≈ 12% of the97

time. The overabundance of significant findings in the literature—coupled with the rates at98

which successful scholars are able to publish—has thus been used to conclude that QRPs are99

widespread, fraud is not infrequent, and wasted effort abounds as negative results accumulate100

in file drawers. Under this model, the “crisis” has a clear cause leading to obvious remedies.101

This model and verbal or mathematical extensions have guided scientific reform, from calls to102

redefine statistical significance to the need for registered reports and increased transparency103

[12, 17, 4].104

Yet, this model is based on a particularly common and fraught assumption. In almost any105

context we would investigate in practice the null hypothesis that d = 0 has nearly zero106

probability of being precisely true. Even if there is no true causal relationship, the context107

we measure an effect or the analyses we perform will mediate the observed effect—if ever so108

slightly—away from zero [24]. These mediators may be consistent and therefore identifiable,109

or ephemeral and hard to pin down. As Andrew Gelman has noted, under the strictest110

interpretation, all findings rejecting a point null hypothesis with a two-tailed test are correct,111

if not usefully so [27].112

If we cannot discretize effects into true (d 6= 0) and false (d = 0), we may instead consider113

them as continuous quantities. This view is motivated by the notion that scientists are often114

interested in effects that are common—though by no means identical—across contexts or115

a population [27, 28]. A given quantitative investigation into an effect can be viewed as116

sampling from a distribution of hypothetical replications spanning some broader population117

and range of contexts. On one extreme, these imagined replications may be conceptual,118

considering diverse implementations and contexts such that observed effects vary widely. On119

the other, these replications may be thought of as “close replications”, explicitly designed120

to minimize variation, as in a “many labs” context [22, 23]. Under this framework, science121

could be considered to be producing knowledge if published effects reliably convey information122

about the broader effect of interest [27]. For example, one could ask whether a significant123

effect chosen arbitrarily from the published literature will be consistent in direction and124

magnitude with the average of the imagined replications. This view of science echoes the125

notion that results should be consistent across contexts, yet replaces a restrictive binary126

truth with continuous calibration.127

This calibration-minded approach is quite natural for Bayesian statisticians, yet the bulk128

of research produced relies on null hypothesis significance testing. This raises a question129

of whether published effect sizes—heavily selected for significance—can nonetheless be cali-130

brated to broader effects of interest. Under what conditions does this occur? Moreover, does131

the rate at which papers replicate in a binary sense provide a reasonable metric regarding132

whether a discipline or area of study is reliably producing knowledge? Do replications truly133

distinguish fact from fiction? More generally, does relaxing assumptions of binary Truth pro-134

vide a qualitatively different perspective on the “replication crisis” and proposed scientific135

reform?136
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To address these questions, we derive a model of publication and replication that incorpo-137

rates variation in effect sizes across contexts. Our model builds on, combines, and extends138

several previous models or schools of thought on varying (or heterogenous) effects and effect-139

size calibration [28, 27, 20, 29]. We leverage this model to examine the impact of varying140

effects on publication and replication rates. We examine whether low rates of replication141

provide information about the tendency for published results to reflect the true direction and142

magnitude of average underlying effects. We use Bayesian methods to apply our model to143

data from replication surveys. Finally, we simulate a body of published literature to examine144

the validity of common concerns over low rates of replication and the likely consequences of145

proposed interventions.146

Theory147

For simplicity, our model (Fig. 1) assumes that researchers conduct one-sample t-tests on148

idealized data and evaluate significance at α = .05. Their hypotheses correspond to average149

effect sizes, d, that are normally distributed about zero, and with a characteristic scale of150

variation, τ . Hypothesis tests that are statistically significant are published; those that fail151

to achieve significance are not.152

d ∼ Normal(0, τ) (2)

The average effect size studied in a given field (i.e. Cohen’s d, E[|d|])), will be equal to153

τ ×
√

2/π. However, when a given effect is measured in practice, features unique to that154

context may mediate the average effect by adding additional mediator variance σ such that155

for a given hypothesis j with replication-averaged effect size dj , study-specific effect sizes, d′j156

will be distributed such that:157

d′j ∼ Normal(dj , σ) (3)

while across hypotheses and contexts:158

d′ ∼ Normal(0,
√
τ2 + σ2) (4)

Here σ captures the magnitude of bias in an observed effect size resulting from mediators159

specific to a given empirical context. This can occur for numerous reasons, ranging from160

a poorly chosen statistical model to imperfect randomization, differing sample populations,161

environmental conditions, or flexibility in experimental design. Even well designed and docu-162

mented procedures in highly controlled contexts can vary in implementation such that σ > 0.163

Notably, this is distinct from unbiased measurement error, ε, because it is independent across164

experiments rather than individuals and therefore cannot be reduced by increasing sample165

size within any individual experiment.166

In addition to context-mediated effects, incorporating measurement error into our model gives167

us the observed effect size for an individual measurement, dobs.168
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dobs ∼ Normal(0,
√
τ2 + σ2 + ε2) (5)

Since the values of τ and σ are shared across all observations within a single experiment, the169

mean effect size observed in an experiment is reduced by a factor of
√
n only in the component170

of variance that is independent between observations, ε:171

d̄obs ∼ Normal(0,

√
τ2 + σ2 + ε2/

√
n) (6)

Note that even if the hypothesized effect size is truly zero, then as the sample size n → ∞172

the expected magnitude of the observed effect size will be |d̄obs| = σ ×
√

2/π.173

From here, we can use a power analysis to estimate the probability that an arbitrary novel174

hypothesis, examined in an experiment with sample size n, achieves statistical significance at175

some threshold α. Where Φ(·) is the standard normal cumulative distribution function and tc176

is the critical value of the test statistic for statistical significance at a given α, this probability177

is given by178

Pr(p < α) = 2× Φ

(
− (ε/

√
n)tc√

ε2/n+ τ2 + σ2

)
. (7)

For simplicity throughout, we standardize effect sizes relative to measurement error such that179

ε = 1. We assume that experimental observations are genuinely normally-distributed (as per180

the model above), but we do not necessarily assume that the statistical analyst makes this181

assumption (i.e. tc may depend on n as the critical threshold in a t-test). We note this aspect182

of the model is an extension of common techniques for estimating statistical power for varying183

effects [28, 30? ].184

Applying our model to a fixed sample size of n = 100, we find that the majority of at-185

tempted hypotheses will obtain significance provided study-specific effect sizes (
√
τ2 + σ2)186

are sufficiently large (Fig. 2A). This implies that high rates of publication across a field187

by themselves can be consistent either with typically large hypothesized effect sizes (τ), the188

presence of large mediation effects (σ), or some combination of the two.189

We can further use our model to estimate the probability that a measured effect will replicate190

in the same direction. It is useful here to define ρ as the proportion of variance due to191

the hypothesized effect size, which also defines the correlation between the outcomes of two192

experiments of the same sample size, exposed to differing mediation effects:193

ρ = τ2/
√
ε2/n+ τ2 + σ2 (8)

Using this definition, we can express the replication probability as the probability that a194

second experiment will record an observed effect size d̄rep > tc, conditioned on the first doing195

so:196
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Figure 1: Overview of the theoretical model. Within a field, researchers propose hypotheses with average effect
sizes characterized by a normal distribution with standard deviation τ . For a given hypothesis, the hypothesized
effect size, dj is mediated across contexts such that the observed effect sizes vary from one experiment to the
next. The mediated effect size is represented by a normal distribution with mean dj and variance σ. The
variance due to mediation, σ, differs from measurement error ε, in that it is insensitive to sample size, n.
Research will observe and publish a significant effect size provided that: dorig > tc.

Pr(rep) = Pr(d̄rep > tc | d̄orig > tc) (9)

=
1

Φ(−tc)

∫ ∞
tc

φ(x)Φ

(
ρx− tc√

1− ρ2

)
dx (10)

where φ(·) is the standard normal probability density function.197

Visualising this expression shows that replication rates are fundamentally constrained by the198

extent to which effects vary (σ), the distribution of hypothesized effects (τ) and the sample199

size (n). Publication rates will exceed what is expected were a strict null hypothesis to200

be plausibly true, and will increase rapidly with N , σ, and τ . (Fig. 2A). However, these201

published effects will only reliably replicate if σ << τ (Fig. 2B). That is, replication rates202

will be low unless the typical scale of hypothesized effect sizes is sufficiently large to overwhelm203

the variation caused by mediator effects. This uncoupling of replication from publication is a204

qualitative difference between varying and fixed effects models [28].205

Under-powered studies are often cited as a reason for low-rates of replication, suggesting that206

we can increase rates of replication by increasing sample sizes [31]. However, our analysis207

suggests that increasing sample sizes cannot universally improve low replication rates. Figure208

2C–D demonstrates this by exploring the impact of sample size n and variable effect size σ209

for a fixed value of τ = 0.2. Specifically, we find that large samples improve publication rates210

yet only meaningfully increase replication when σ < τ (Fig. 2C–D). Above that threshold,211

replication rates of ≈ 50% will be observed even for arbitrarily large sample sizes. The212

implications are striking: a field with access to large datasets spanning a wide range of contexts213

will appear quite productive in terms of obtaining significant results—but replication rates214

may remain low and thus the field will be inefficient at producing transferable knowledge.215

As with publication rates, a varying-effects reduces the coupling between sample size and216

replication.217
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Figure 2: A) Contour lines indicate publication rates with sample size n = 100. The probability of publication
increases with both the magnitude of hypothesized effects, τ and their variability across contexts, σ. B)
Contour lines indicate probability of successful replication, again with n = 100. This probability increases with
increasing effect size τ and usually but not always decreases with increasing varying effects σ. C) Publication
probability for fixed τ = .2 increases with sample size (horizontal axis) and varying effect size (vertical axis)
D) Replication probability for fixed τ = .2 increases with of sample size and usually decreases with varying
effect size.

Replication is often presented as a binary affair: either a study replicates, or it doesn’t. This218

obscures important complexities in the nature of failed replications and erroneous findings.219

Sometimes a replication will simply fail to yield a significant result. Other times, a replica-220

tion will actually find a significant result in the opposite direction, suggesting that even the221

direction of the effect may have been wrongly identified. We call this a Type-S error, and222

such errors are of particular concern as effects can be qualitatively challenging to reconcile223

with existing research and may lead to incorrect decisions in applied contexts. We can extend224

our model to examine the proportion of significant effects that indicate the incorrect direction225

relative to their replication-averaged effects:226
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Pr(Type-S) = Pr(d′ > 0 | d̄obs < −tc) (11)

=
Pr(d′ > 0)× Pr(d̄obs < −tc | d′ > 0)

Pr(dobs < −tc)
(12)

=
Φ(0)

Φ( −tc√
τ2+σ2+ε2/n

)

×
∫ ∞
0

2× Φ(
−tc − x√
σ2 + ε2/n

)φ(
x

τ
)dx

(13)

Here, φ is the standard normal probability density function and Φ is the standard normal227

cumulative density function. The expression above gives the probability that the observed228

effect size is below −tc, for all hypothesized effect sizes d > 0. This model is derived from229

earlier work on Type-S error, but explicitly incorporating the sample size and associated error230

[32]. Evaluating this expression over a range of values of τ and σ reveals that most research231

will indicate the correct direction of an effect, even in contexts where replication rates are232

low (Fig. 3A). This results from the presence of a signal (even if small) favoring outcomes233

in the direction of the underlying effect. This theoretical finding is consistent with generally234

low rates of significant reversals in replication surveys [33, 2, 3] We further evaluate Type-235

S error as a function of sample size and variation in effect sizes for fixed τ = .2. Across236

sample sizes, Type-S error increases with σ. However, for sample sizes below n ≈ 200, this237

effect is less pronounced as low power requires that mediator effects and signal are aligned in238

direction to achieve significance (Fig. 3C). For small sample sizes and small effects, artificially239

increasing σ could paradoxically improve detection of weak effects through a phenomenon akin240

to stochastic resonance S1. This could occur by intentionally adding noise to effect sizes or241

through some actions typically associated with QRPs, provided they’re direction-agnostic.242

Beyond Type-S error, published effects may be exaggerated in magnitude from the underlying243

effect. This is commonly referred to as either Type-M error or the exaggeration ratio: the244

ratio of the reported effect to the replication-averaged effect [27]. According to our model,245

Type-M errors arise because experiments where the hypothesized effect size is small are more246

likely to nonetheless return significant results and thus be published when the mediator ef-247

fects or sample variance are large and in the same direction, producing spuriously strong248

observed effect sizes. We can estimate type-M error in published (here, significant) studies249

by calculating the expected value of published effects and dividing by the average effect size:250

τ
√

2/π.251

Type-M = E(| ¯dobs| | | ¯dobs| > tc)/E(|d|)

=

√
τ2 + σ2 + ε2/n

τ
√

2/π

φ(tc/
√
τ2 + σ2 + ε2/n)

1− Φ(tc/
√
τ2 + σ2 + ε2/n)

(14)

We find that type-M error among significant findings will be low, provided τ is sufficiently252

large. When τ is small, context-specific mediation in the same direction as the underlying253

effect is necessary to achieve significance, artificially inflating observed effects. However, when254

τ is large, observed effects can achieve significance regardless of the mediation specific to a255

given context. Across sample sizes with fixed τ , type-M error increases with σ. In contrast256
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Figure 3: A) Contour lines indicate the probability that a published study determines the wrong direction
for an effect (Type-S error). This probability decreases with the magnitude of hypothesized effects τ and
increases with the variability across contexts σ. B) As in A, depicting the proportion of studies that replicate
C) Type-S error for fixed τ = .2 decreases slightly with sample size (horizontal axis) and increases strongly
with the magnitude of varying effects (vertical axis). D) Type-M error for fixed τ = .2 decreases with sample
size (vertical axis) and increases with the magnitude of varying effects (vertical axis)..

to type-S error, type-M error is more pronounced at small sample sizes. This arises, however,257

from the same mechanism—directional alignment between mediation and the hypothesized258

effect.259

Finally, we note that our theoretical approach is extensible to contexts where a proportion260

of hypotheses have near-zero effect sizes while others tend to have non-zero effects. This261

may occur, for instance, in testing of potential pharmaceuticals, where some are biologically262

inert and others exhibit biological activity. We can estimate this by considering the published263

literature as a mixture of two classes of papers, those with τ1 & 0 and τ2 > 0. Doing so with264

90% of studies evaluating arbitrarily small true effects nonetheless yields plausible file drawer265

sizes owing to the influence of σ. However, an overabundance of “true” null hypotheses in the266

literature tends to reduce rates of replication. Under these conditions Type-S error is large267

as σ drives significance contrary to the directions of the trivially small effects. Type-M error268

is difficult to interpret in this context as true effects near zero render type-M error arbitrarily269

large (Fig S2, S3).270

This example highlights how it may be necessary to adapt the theory outlined above to271
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contexts where there are mechanistic reasons to believe the hypothesized effects (or their272

variation across contexts) are not normally distributed or differ from our model in qualitative273

ways. For example, research into life-saving treatments may have more capacity for effects274

in the direction of prolonging life than shortening it. Any specific set of distributional as-275

sumptions will necessarily alter the relationship between replication and type-S and type-M276

error. Taking this into account, replication as a metric is unlikely to be reliably coupled to277

publication, sample sizes, or type-M/S error. For this reason, comparison of replication rates278

across disciplines is likely to be particularly fraught.279

Statistical and computational model280

Our analytical results reveal that a given rate of replication is consistent with wide range of281

typical effect sizes, variation in observed effects, and sample sizes relative to measurement282

error. Moreover, replication does not reliably correspond to type-S and type-M error. Repli-283

cation rates near 50% (for instance) could arise from either a field with large sample sizes and284

replication-averaged effects that are small relative to variable effects, or inadequate sample285

sizes and replication-averaged effects that are larger relative to variable effects. This stands286

in contrast to the notion that replication rates directly measure the abundance of false (i.e.287

d = 0) findings in the literature.288

To distinguish between these possibilities, it is necessary to constrain the parameters for our289

model to values corresponding to replication-averaged effect sizes, mediation, and sample sizes290

(i.e., τ , σ, and n) typical of a given discipline. Here, we estimate these parameters from the291

Reproducibility Project: Psychology (RPP) dataset, a large-scale survey of replication in the292

field of psychology [2]. In this study, researchers attempted to replicate 97 significant findings293

from the psychology literature. They obtained significance for ≈ 40% of replication attempts,294

noting effect sizes were smaller on average for replications. We estimate parameters for our295

model, assuming that true effects are normally distributed about zero (i.e, d′ ∼ Normal(0, τ))296

with average bias in a given context σ. We further assume that significant original effects are297

censored by tc (See Methods). We note that these assumptions are made for comparison with298

our purely theoretical model, but more sophisticated modeling choices could explicitly model299

variation as a function of effect size or incorporate mixtures of effect size distributions.300

Our model fitting procedure produced an estimate for τ of 0.80, (Cohen’s d, 94% C.I.[.65301

0.97]), larger than variation attributable to context (σ = 0.61, 89% C.I.[0.49, 0.71], Fig.302

4A, Table S1). Using the joint posterior distribution of parameters, we simulated a body303

of literature consisting of attempted experiments in which significance was obtained through304

an independent samples t-test. Effect sizes for each “experiment” were drawn from a normal305

distribution such that d ∼ φ(0, τ) and dorig ∼ φ(dj , σ). For simplicity, we consider those with306

significant results to be “published” proportionate to the observed selection for significance (at307

p < .05) in the original dataset. The published studies are then replicated by conducting an308

identical statistical test with the replication effect size distributed such that drep ∼ φ(dj , σ).309

At the median sample size from the original experiments N ≈ 50, our simulations reveal310

that approximately half of attempted experiments will achieve significance (Fig. 4B). In con-311

trast to previous estimated file drawer ratios of 10 : 1, our simulations suggest that initial312

experiments will be significant at rates consistent with those observed in registered reports313

[4, 15]. These results further suggest that increasing sample size above ≈ 200 can ensure314

the majority of attempted research achieves significance (Fig. 4B). This can also occur if315
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researchers relax thresholds for significance in any number of ways: by accepting p < 0.1316

as marginally significant, by deviating from pre-registered plans, by publishing exploratory317

analyses or by engaging in QRPs. By contrast, strengthening thresholds for significance—318

which has been proposed a solution for the replication crisis[12]—dramatically reduces the319

number of significant findings . Given preferential publishing and citation of significant find-320

ings, researchers choosing to adopt stricter significance thresholds may do so at a cost to their321

perceived productivity and quantifiable scientific impact (e.g., citations, H-index). Similarly,322

journals adopting these standards may receive fewer manuscripts.323

Our model generates similar observed effect sizes, that are particularly inflated at the sample324

sizes typical of studies in the replication survey (4C). At these sample sizes, we observe325

replication rates between 30 and 60%, sharply increasing with sample size (4D). At the median326

sample size N ≈ 50, our simulations exhibit higher rates of replication than were observed327

in the RPP (39%). This is likely due to the idealized nature of our simulations, wherein all328

“researchers” conduct the same statistical test on data that perfectly meet its assumptions,329

with identical sample sizes that are independent of the effect size.330

Our model does suggest that stricter criteria for significance can improve replication rates,331

particularly for the smaller sample sizes typical of studies included in the RPP (Fig. 4D, [12]).332

Yet reducing thresholds for significance has unintended consequences on observed effect sizes333

among significant findings. For small sample sizes, smaller choices for α inflate estimates334

of effect sizes because significance is more likely to be achieved when there is directional335

alignment between mediation and the effect (Fig. 4C). Should significant research continue to336

be preferentially published or cited, stricter criteria for significance may increase systematic337

errors in estimating the magnitude of effects (i.e., Type-M error).338

If the goal of some reform is simply to improve rates of replication, increasing average sample339

sizes may be particularly effective (Fig. 4D). However, this effect begins to saturate at ≈ 65%340

of research replicating for sample sizes greater than ≈ 200. Yet our model further reveals341

that low rates of replication (and indeed failed replication) may not be particularly indicative342

of whether psychology is producing results that are correct in direction. Even for regions of343

parameter space where rates of replication are low, most (> 80%) of studies will identify the344

correct direction of the effect (i.e., avoid Type-S error, Fig. 4E). This is a natural consequence345

of variation in observed effect sizes being lower than the average hypothesized effect: it is346

unlikely that context-specific effects can overcome the true effect enough to obtain significance347

in the opposing direction.348

Similarly, significant replication reversals should be rare (<≈ 10%) in the absence of QRPs,349

confounded models, or large values for α (Fig. 4F). Somewhat counter-intuitively, small350

sample sizes may protect against type-S error and reversals by requiring alignment between351

mediation and directional effects—increasing type-M error. For some disciplines, choice of352

sample size may act as a lever to manage trade-offs between type-S and type-M error. Further,353

the low simulated rates of type-S error highlight the possibility that the vast majority of354

published psychological research is “true” (i.e. consistent in direction), albeit with effect sizes355

biased by significance as a filter for publication. The low rates of replication observed in the356

RPP (39% compared to economics 62%) may have been closer to 70% had the original papers357

and replication survey used arbitrarily large sample sizes.358

We note that these results should not be interpreted as the true state of psychology as a field.359

In reality, the specific tests used and their appropriateness to the data will impact publication,360



SocArXiv 13

replication, type-S, and type-M error. Further, there may exist relationships between σ, N ,361

and hypothesized effects. Small effects may vary less than large ones, or researchers may362

choose sample sizes based on intuition about likely values of d and σ. For these reasons, the363

above results are better interpreted as reflecting an idealized field with similar observed effect364

sizes that vary in a similar manner to psychological research. Yet, even in such an idealized365

environment, high rates of replication may not be possible even absent QRPs or large file-366

drawers. Moreover, our model highlights how efforts to improve replication can come at a367

cost to both productivity or Type-S/M error.368

Discussion

It is difficult to overstate the importance of ensuring science, as an institution, is reliably369

producing knowledge. Eroded faith in science has undermined our ability to effectively manage370

a pandemic, and convince the world that action is needed to address climate change[34, 35]. In371

a world where point null hypotheses can be true and varying effects matter little, widespread372

replication failures force us to accept that science is wrought with unethical behavior, full373

of falsehoods, and wasting substantial resources on investigations that never see the light of374

day. Those skeptical of scientific inquiry would have cause. Whole disciplines will need to be375

rebuilt from scratch and textbooks must be rewritten. We would need immediate and drastic376

reform of scientific institutions and processes far exceeding what has currently been proposed.377

However, if we acknowledge the role of varying effects, scientific inquiry can be productive,378

largely ethical, and generally devoid of fraud and wasted effort. Replication is no longer an379

arbiter of truth, with successes and failures being minimally informative. Currently proposed380

scientific reforms in this world would have differing, often unintended consequences. Lowering381

thresholds for significance may reduce productivity without producing literature that is sub-382

stantially more calibrated to the broader effects of interest (Fig 4). Increasing sample size may383

inadvertently make type-S error worse (Fig. 3C). If QRPs do not pose an existential threat to384

scientific productivity, benefits of increased transparency will need to be re-calibrated against385

concerns that some reforms may impose disproportionate costs to early career researchers,386

particularly those whose identities are underrepresented in science [10]. Scientists, scruti-387

nized by their peers and accused of unethical behavior due to failed replications are owed an388

apology.389

Our model is not presented to make claims about the true state of science as a whole—in390

many ways, over-reliance on a single model is what got us here in the first place [6]. Rather391

it serves as a tool for viewing replication and its relationship to scientific productivity in a392

new light. Distinguishing between these two dramatically differing perspectives is essential.393

Empirical evidence, from meta-analyses and “many labs” studies will be helpful yet need to be394

grounded in formal theory and methodology [36]. Extensions of our model or others should395

be compared with observations and adjusted, both within fields and across science.396

Of course, we are not the first to point out that varying effects (or heterogeneity) can impact397

replication [20, 21, 28, 24]. Empirical evidence from meta-analyses in psychology has suggested398

substantial heterogeneity, argued as sufficient to explain the replication crisis [24]. Yet power399

analyses conducted on average heterogeneity observed in “many labs” studies were used to400

argue the opposite [23]. Absent formal methodology to bridge these disparate observations,401

disagreement over the impact of heterogeneity remains, with camps on either side [21].402



14 Replication does not measure scientific productivity

Figure 4: Simulation of publication and replication in psychology based on the RPP dataset. A) Posterior
distributions of parameter estimates for hypothesized effect sizes τ and mediation σ B) Rates of publication
as a function of sample size for varying levels of α. C) Average published effect sizes as a function of sample
size and varying α. D) Rates of replication as a function of sample size and α. E) Type-S error as a function
of sample size and α F) Replication significance in the opposing direction, reversals, as a function of sample
size and α. For all plots, the grey histogram indicates the distribution of sample sizes of original experiments
in the RPP



SocArXiv 15

These conflicting views can be reconciled from the perspective of our model. Within a many403

labs context, careful protocols define a new distribution of hypothetical replications with a404

unique dj,ML and smaller σj,ML. One would expect to see high replication rates for the405

subset of replicated studies where this unique dj,ML is large enough to overwhelm σj,ML.406

Indeed this is often the case, although it is typically interpreted as a distinction between407

“robust” and “fragile” effects [37]. When surveyed across the broader literature, the imagined408

distribution of replications differs (larger σ, new dj), altering one-off replication rates. Debates409

such as the one above highlight a broader trend of relying on verbal argumentation—absent410

formal theory—to reconcile empirical results from the social sciences into broader conclusions411

about science as a whole [36]. Formal theory will be essential for making sense of conflicting412

observations and understanding when and whether they generalize.413

The simplicity that enabled our analysis leads to several limitations. Questionable research414

practices certainly do occur. However, their consequences on inference may differ substan-415

tially, in a manner that is dependent on the parameters unique to a given discipline or area416

of study (Supplementary Fig S1). Moreover, our model assumes that researchers have a417

well-specified model, appropriate to their data and question. Poorly specified models could418

increase σ, or lead to apparently reliable findings that are merely the result of a particularly419

robust confound or violated assumption [36]. More generally, even correct statistical inference420

provides no guarantee of correct interpretation or decision-making.421

We strongly caution against interpreting our model, in the exact form described above, as422

something that can be applied across the breadth of scientific inquiry without adaptation or423

adjustment. Fields vary widely in terms of their average effect sizes, sample sizes, variability,424

and the distributions of each. In some contexts the parameters of our model may covary, for425

instance with larger effects being more variable [23]. If warrented, fragility of effects could be426

incorporated by assuming a distribution of σ rather than a fixed value. For some contexts,427

point nulls may be argued to apply. Indeed these could be recovered from our model by428

considering a distribution of effect sizes that is a mixture of a Dirac delta function centered429

on zero and some other distribution of “true” effects, perhaps with σ & 0 (Supplementary Fig.430

S2, S3). More generally, implementations and extensions of our model restore (or erode) the431

coupling of replication and other measures of productivity. It is precisely this lack of reliable432

coupling that makes replication a poor general measure of scientific productivity.433

A corollary of this variation across disciplines is that conflict between our model and obser-434

vations in some discipline is both to be expected and cause for further investigation. Indeed435

it is unreasonable that a single model—ours or any other—could provide universal insight436

into scientific best practices that incorporate every disciplines’ unique properties, constraints,437

costs, and benefits. After all, how could best practices derived in psychological studies on438

Amazon Mechanical Turk be expected to apply to studies of elusive snow leopards, or the439

petabytes of data gathered by particle accelerators.440

Yet at this point in time, we are barreling forward with whole-of-science scientific reforms,441

from journal policies to norms of preregistration and sample size expectations. These reforms442

have placed replication front and center, as a cornerstone of scientific inquiry. Doing so443

has eroded public trust in science [7] and our own trust in fellow scientists’ abilities and444

motivations. Here we show that relaxing the transparently fraught assumptions of traditional445

models raises doubts about whether replication can be an arbiter of truth for specific studies,446

or a meaningful measure of knowledge production. A varying-effects framing yields a view447

of scientific productivity that is more nuanced and adapatable with far less baggage—less448
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wasted effort and no need for widespread QRPs or a literature rife with falsehood. Given this449

possibility, placing replication as a cornerstone of scientific productivity and reform warrants450

reflection.451

Methods

Theoretical Analysis452

Our analyses was conducted in using Python 3.9.10. We analyzed our purely theoretical453

model as described in text using standard functions in Numpy and Scipy. For each figure,454

we constructed a mesh grid of parameters and numerically evaluated our model for each455

parameter combination.456

Parameter Estimation from Replication Surveys457

To estimate parameters from replication survey datasets, we adapted our theory to a gener-458

ative Bayesian model coded in PyMC3:459

σ ∼ Exponential(1)

τ ∼ Exponential(1)

d ∼ Normal(0, τ)

s =

√
σ2 +

1√
n

do,i ∼ TruncatedNormal(di, s)

dr,i ∼ Normal(di, s)

Effect sizes from the original dataset were converted into Cohen’s d. As effect sizes in the460

dataset were presented as absolute values, effects assigned a direction, si, at random (s =461

{−1, 1}). For each of i studies, this model assumes the original and replication effect sizes462

(do,i and dr,i, Cohen’s d) as normally distributed with mean muo and mur and standard463

deviation defined by σ and measurement error. To accommodate censoring from publication464

filters, do was estimated using normal distribution truncated by the minimum effect size that465

would have achieved significance for the sample size. Values for d are partially pooled using466

shared hyperparameters for τ (the average effect size). Prior predictive simulations were used467

to ensure the model and priors produced reasonable ranges of effect sizes. Posterior predictive468

checks were used to evaluate model fit.469

Simulations470

We simulated a body of published literature (Fig 4) using 500 draws from the joint posterior471

distribution from our parameter estimation. For each draw, we generated 1000 true effect sizes472

corresponding to hypothesized research and distributed such that dtrue ∼ Normal(0, τ). For473
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each of the true effect sizes, an initial “experiment” was conducted by generating an observed474

effect size such that dorig ∼ Normal(dtrue, σ).475

For each effect size, we calculated the power of a two-sample, two-tailed t-test, 1−β. Studies476

were considered“published” with probability θ×(1−β)+β×(1−θ), where θ was the observed477

proportion of significant findings in the literature. We then drew a second effect size, drep, for478

each published effect using the same procedure for obtaining dorig. One-tailed power analyses479

were used to calculate the probability of replication and reversal. Similarly, one-tailed power480

analyses were used on dorig of published studies to calculate the rate of type-s error. This481

processes was repeated across varying values for α and N and shown in the Figure 4.482
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nus Johannesson, Michael Kirchler, Johan Almenberg, Adam Altmejd, Taizan Chan,494

Emma Heikensten, Felix Holzmeister, Taisuke Imai, Siri Isaksson, Gideon Nave, Thomas495

Pfeiffer, Michael Razen, and Hang Wu. Evaluating replicability of laboratory exper-496

iments in economics. Science, 351(6280):1433–1436, 3 2016. ISSN 10959203. doi:497

10.1126/SCIENCE.AAF0918/SUPPL{\_}FILE/PAP.PDF. URL https://www.science.498

org/doi/abs/10.1126/science.aaf0918.499

[2] Open Science Open Science Collaboration. PSYCHOLOGY. Estimating the reproducibil-500

ity of psychological science. Science (New York, N.Y.), 349(6251):aac4716, 2015. ISSN501

1095-9203. doi:10.1126/science.aac4716. URL http://www.ncbi.nlm.nih.gov/502

pubmed/26315443.503

http://10.1126/SCIENCE.AAF0918/SUPPL{_}FILE/PAP.PDF
http://10.1126/SCIENCE.AAF0918/SUPPL{_}FILE/PAP.PDF
http://10.1126/SCIENCE.AAF0918/SUPPL{_}FILE/PAP.PDF
https://www.science.org/doi/abs/10.1126/science.aaf0918
https://www.science.org/doi/abs/10.1126/science.aaf0918
https://www.science.org/doi/abs/10.1126/science.aaf0918
http://10.1126/science.aac4716
http://www.ncbi.nlm.nih.gov/pubmed/26315443
http://www.ncbi.nlm.nih.gov/pubmed/26315443
http://www.ncbi.nlm.nih.gov/pubmed/26315443


18 Replication does not measure scientific productivity

[3] Timothy M Errington, Maya Mathur, Courtney K Soderberg, Alexandria Denis, Nicole504

Perfito, Elizabeth Iorns, and Brian A Nosek. Investigating the replicability of preclinical505

cancer biology. eLife, 10, 12 2021. ISSN 2050-084X. doi:10.7554/ELIFE.71601. URL506

http://www.ncbi.nlm.nih.gov/pubmed/34874005.507

[4] Valen E. Johnson, Richard D. Payne, Tianying Wang, Alex Asher, and Soutrik Man-508

dal. On the Reproducibility of Psychological Science. Journal of the American Sta-509

tistical Association, 112(517):1–10, 1 2017. ISSN 1537274X. doi:10.1080/01621459.510

2016.1240079/SUPPL{\_}FILE/UASA{\_}A{\_}1240079{\_}SM0539.ZIP. URL https:511

//www.tandfonline.com/doi/abs/10.1080/01621459.2016.1240079.512

[5] Uri Simonsohn, Leif D. Nelson, and Joseph P. Simmons. p-Curve and Effect Size: Cor-513

recting for Publication Bias Using Only Significant Results. Perspectives on Psychological514

Science, 9(6):666–681, 11 2014. ISSN 17456924. doi:10.1177/1745691614553988.515

[6] John P.A. A Ioannidis. Why most published research findings are false. PLoS Medicine,516

2(8):e124, 2005. ISSN 15491676. doi:10.1371/journal.pmed.0020124. URL http:517

//www.ncbi.nlm.nih.gov/pubmed/16060722.518
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Schönbrodt, and Simine Vazire. Replicability, Robustness, and Reproducibility in Psy-720

chological Science. https://doi.org/10.1146/annurev-psych-020821-114157, 73:719–748,721

1 2022. ISSN 15452085. doi:10.1146/ANNUREV-PSYCH-020821-114157. URL https:722

//www.annualreviews.org/doi/abs/10.1146/annurev-psych-020821-114157.723

Affiliation:724

Joe Bak-Coleman725

University of Washington726

Seattle, Washington727

E-mail: joebak@uw.edu728

URL: http://www.joebakcoleman.com729

SocArXiv Website https://socopen.org/730

SocArXiv Preprints https://osf.io/preprints/socarxiv731

Preprint Submitted: May 12, 2022732

URL/DOI GOES HERE Accepted: May 12, 2022733

http://10.1146/ANNUREV-PSYCH-020821-114157
https://www.annualreviews.org/doi/abs/10.1146/annurev-psych-020821-114157
https://www.annualreviews.org/doi/abs/10.1146/annurev-psych-020821-114157
https://www.annualreviews.org/doi/abs/10.1146/annurev-psych-020821-114157
mailto:joebak@uw.edu
http://www.joebakcoleman.com
https://socopen.org/
https://osf.io/preprints/socarxiv
http://URL/DOI GOES HERE

	Code Availability

