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1 Abstract

The role of perceived experts (i.e., medical professionals and biomedical scien-
tists) as potential anti-vaccine influencers has not been characterized system-
atically. We describe the prevalence and importance of anti-vaccine perceived
experts by constructing a coengagement network based on a Twitter data set
containing over 4.2 million posts from April 2021. The coengagement network
primarily broke into two large communities that differed in their stance toward
COVID-19 vaccines, and misinformation was predominantly shared by the anti-
vaccine community. Perceived experts had a sizable presence within the anti-
vaccine community and shared academic sources at higher rates compared to
others in that community. Perceived experts occupied important network posi-
tions as central anti-vaccine nodes and bridges between the anti- and pro-vaccine
communities. Perceived experts received significantly more engagements than
other individuals within the anti- and pro-vaccine communities and there was
no significant difference in the influence boost for perceived experts between
the two communities. Interventions designed to reduce the impact of perceived
experts who spread anti-vaccine misinformation may be warranted.

2 Introduction

Vaccine refusal poses a major threat to public health, and has been a particu-
lar concern during the COVID-19 pandemic [Islam et al., 2020, Tangcharoen-
sathien et al., 2020, Bonnevie et al., 2021, Carpiano et al., 2023]. An estimated
232,000 vaccine-preventable COVID-19 deaths occurred in unvaccinated adults
in the United States across a fifteen-month period (May 2021 - September 2022)
[Jia et al., 2023]. Exposure to misinformation (i.e., false or misleading claims)
may reduce vaccine uptake, increasing individual risk of morbidity and mor-
tality and potentially lead to disease outbreaks [Loomba et al., 2021, Wilson
and Wiysonge, 2020]. The Internet, particularly social media, is an important
source of both vaccine information and misinformation [Jones et al., 2012, Kata,
2010, Wawrzuta et al., 2021, Islam et al., 2020]. Social media surveillance has
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been proposed as a strategy to assess public opinion about vaccination and
to study patterns in vaccine decision-making that may inform interventions
[Cascini et al., 2022, Tavoschi et al., 2020, Boucher et al., 2021, Griffith et al.,
2021, Tangcharoensathien et al., 2020]. For example, online social networks
often contain influencers, users who play outsized roles in information propa-
gation and receive significantly more engagement with their content than other
users [Peng et al., 2017, Bakshy et al., 2011, Cha et al., 2010, Goyal et al.,
2008, DeVerna et al., 2022]. Once identified, influencers may be targeted to
optimize rapid dissemination of information (e.g., for advertising, public service
announcements, or fact-checking purposes) [Peng et al., 2017, Bakshy et al.,
2011, Nguyen et al., 2013, Candogan and Drakopoulos, 2017] or to reduce the
propagation of harmful content with minimal intervention [Smith et al., 2021,
DeVerna et al., 2022, Manoel Horta Ribeiro et al., 2018].

Information consumers often use markers of credibility to assess different
sources [Acerbi, 2016, Sundar, 2007]. Specifically, prestige bias describes a
heuristic where one preferentially learns from individuals who present signals
associated with higher status (e.g., educational and professional credentials)
[Jiménez and Mesoudi, 2019, Jucks and Thon, 2017, Berl et al., 2021]. Im-
portantly, prestige-biased learning relies on signifiers of expertise that may or
may not be accurate or correspond with actual competence in a given domain
[Acerbi, 2016, Brand et al., 2020]. Therefore we will refer to perceived experts
to denote individuals and organizations that signal biomedical expertise in their
social media profiles, but note that credentials may be misrepresented or misun-
derstood. In particular, we focus on the understudied role of perceived experts
as potential anti-vaccine influencers who accrue influence through prestige bias
[Cascini et al., 2022, Tangcharoensathien et al., 2020]. Medical professionals,
biomedical scientists, and organizations are trusted sources of medical informa-
tion who may be especially effective at persuading people to get vaccinated and
correcting misconceptions about disease and vaccines [Amazeen and Krishna,
2020, Vraga and Bode, 2017, Freed et al., 2011, Gesser-Edelsburg et al., 2018,
Jucks and Thon, 2017], suggesting that prestige bias may apply to vaccination
decisions, including for COVID-19 vaccines [Lopes and 2021, 2021, Reiter et al.,
2020, Berenson et al., 2021]. [The Virality Project, 2022, Jamison et al., 2020,
Carpiano et al., 2023].

Despite the large body of research on perceived experts who recommend vac-
cination, the prevalence and influence of perceived experts acting in the opposite
role, as disseminators of false and misleading claims about health has not been
studied directly. Prior work on anti-vaccine influencers suggested a category
analogous to our definition of perceived experts and provided notable examples
[Smith, 2017, Van Schalkwyk, 2019, The Virality Project, 2022, Carpiano et al.,
2023]. For example, former physician Andrew Wakefield and other perceived
experts promulgated the myth that the measles, mumps, and rubella (MMR)
vaccine causes autism [Kata, 2010], perceived experts appeared in the viral
Plandemic conspiracy documentary and other anti-vaccine films [Prasad, 2022,
Bradshaw et al., 2020, 2022], and six of the twelve anti-vaccine influencers iden-
tified as part of the “Disinformation Dozen” responsible for a majority of anti-
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vaccine content on Facebook and Twitter included medical credentials in their
social media profiles [Center for Countering Digital Hate, 2021]. Anti-vaccine
users comprised a considerable proportion of apparent medical professionals (a
subset of perceived experts excluding scientific researchers) sampled based on
use of a particular hashtag (#DoctorsSpeakUp) [Bradshaw, 2022] or inclusion
of certain keywords in their profiles [Ahamed et al., 2022, Kahveci et al., 2022].
The number and population share of perceived experts across the community of
individuals on the microblogging website Twitter opposing COVID-19 vaccines
has not been assessed systematically, an important step toward understanding
the scale of this set of potential anti-vaccine influencers and one of the goals of
this paper.

In addition to signaling expertise in their profiles, perceived experts may
behave like biomedical experts by making scientific arguments and sharing sci-
entific links, but also propagate misinformation by sharing unreliable sources.
Anti-vaccine documentaries frequently utilize medical imagery and emphasize
the scientific authority of perceived experts who appear in the films [Prasad,
2022, Bradshaw et al., 2020, Hughes et al., 2021]. Although vaccine opponents
reject scientific consensus, many still value the brand of science and engage with
peer reviewed literature [Koltai and Fleischmann, 2017]. Scientific articles are
routinely shared by Twitter users who oppose vaccines and other public health
measures (e.g., masks), but sources may be presented in a highly selective or
misleading manner [van Schalkwyk et al., 2020, Van Schalkwyk, 2019, Abhari
et al., 2023, Lee et al., 2021, Beers et al., 2022, Koltai and Fleischmann, 2017].
At the same time, misinformation claims from sources that often fail fact checks
(i.e., low-quality sources) are pervasive within anti-vaccine communities, where
they may exacerbate vaccine hesitancy [Loomba et al., 2021, Sharma et al.,
2021, DeVerna et al., 2022, Muric et al., 2021]. Here, we investigate how much
perceived experts in the anti-vaccine community share both misinformation and
scientific sources compared to other users to understand the types of evidence
perceived experts use to support their arguments.

After describing the types of information that perceived experts share, we
evaluate their ability to reach large audiences who help spread their messages.
Various network centrality metrics have been developed to describe the impor-
tance of a given node (in this case, user) to information flow based on con-
nections to other nodes. For example, degree centrality is the count of edges
(connections between nodes) linking a given node to other nodes, betweenness
centrality is the number of times a given node lies on the shortest path between
two other nodes, and eigenvector centrality scores nodes recursively based on
the centrality of the nodes to which they are connected (Supplemental Table 1).
Centrality metrics are commonly used to rank the importance of different users
within a social media and help identify influential users [Cha et al., 2010, Ha-
gen et al., 2018, Simmie et al., 2014, Riquelme and González-Cantergiani, 2016,
Gilbert and Paulin, 2015]. Pro-vaccine perceived experts were highly central in
other Twitter networks discussing vaccines, but no prior analysis has focused
on the the centrality of perceived experts in the anti-vaccine community [Hagen
et al., 2022, Sanawi et al., 2017]. In addition to a node’s centrality to the whole
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network, its ability to span opposing communities may be particularly signif-
icant [Beers et al., 2023]. “Cognitive bridges,” or users who share content of
interest to both anti-vaccine and pro-vaccine communities may be particularly
important due to their potential to connect vaccine skeptics with accurate infor-
mation or to reduce vaccine confidence in pro-vaccine audiences [van Schalkwyk
et al., 2020]. If perceived experts occupy central and bridging network positions,
they may be well-positioned to share their opinions with other users and share
(mis)information about vaccines.

In general, perceived expertise may increase user influence within anti-vaccine
communities. Although vaccine opponents express distrust in scientific institu-
tions and the medical community writ large, they simultaneously embrace per-
ceived experts who oppose the scientific consensus as heroes and trusted sources
[Kata, 2010, Prasad, 2022, Hughes et al., 2021, Bradshaw et al., 2022]. Medical
misinformation claims attributed to perceived experts were some of the most
popular and durable topics within misinformation communities on Twitter dur-
ing the COVID-19 pandemic [Boucher et al., 2021, Haupt et al., 2021]. In fact,
compared to individuals who agree with the scientific consensus, individuals
who hold counter-consensus positions may actually be more likely to engage
with perceived experts that align with their stances [Beers et al., 2022, Faasse
et al., 2016, Wood, 2018]. This expectation is based on experimental work on
source-message incongruence, which suggests that messages are more persuasive
when they come from a surprising source [Manes, 2019, Wood and Eagly, 1980].
This phenomenon may extend to the case where perceived experts depart from
the expected position of supporting vaccination. In an experiment where partici-
pants were presented with claims from different sources about a fictional vaccine,
messages from doctors opposing vaccination were especially influential and were
transmitted more effectively than pro-vaccine messages from doctors [Jiménez
et al., 2018]. However, this effect has not been tested for actual perceived ex-
perts commenting on real vaccines. We posit that perceived experts who spread
misinformation may be disproportionately amplified within the Twitter net-
work and have a greater influence on opinion compared to those who advance
consensus positions and encourage vaccination [Efstratiou and Caulfield, 2021].
By quantifying the relative impact of perceived experts within the anti-vaccine
community compared to other individuals, we will establish whether they rep-
resent a particularly influential group that should be specifically considered in
interventions to encourage vaccine uptake.

For this study, we collected over 4.2 million unique posts to Twitter contain-
ing keywords about COVID-19 vaccines during April 2021 (listed in Supplemen-
tal File 1). Users with shared audiences (i.e., those whose posts were shared at
least twice by at least ten of the same users) were linked to form a coengagement
network Figure 1, which is analogous to co-citation networks in bibliographic
analyses that connect sources that are commonly referenced together [Beers
et al., 2023]. This method groups users based on how their tweets are received
instead of how they engage with other users (as would be the case if edges
were based on whether users retweeted, mentioned, or followed each other) and
filters the network to users who were retweeted by people who also retweeted
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other people in the network (i.e., users who have an audience). Profile names
and descriptions for all accounts in the coengagement network were reviewed
to identify individual users with English profiles and classify those with profes-
sional or academic biomedical credentials in their profiles as perceived experts.
The network was separated into two main communities using the Infomap com-
munity detection algorithm, which identifies densely interconnected groups of
nodes. Three coders assessed a sample of popular tweets from both communities
and determined that users in one generally expressed a negative stance toward
COVID-19 vaccines while users in the other were primarily positive, leading us
to label the communities as anti- and pro-vaccine respectively.

Our analysis is divided into two parts, where the first focuses on describing
the community of perceived experts and the second evaluates their influence
relative to other individuals. First, we characterized the prevalence of perceived
experts and roles they play in conversations about COVID-19 vaccines, asking:
(1) How many perceived experts are there in the anti- and pro-vaccine commu-
nities? and (2) How often do perceived experts in the anti-vaccine community
share misinformation and scientific sources relative to other users? We first
calculated the number and proportion of perceived experts in the anti- and pro-
vaccine communities. To assess the types of evidence shared in the anti- and
pro-vaccine communities depending on perceived expertise, we determined the
proportion of links shared from domain names classified as low-quality sources
by Media Bias/Fact Check or as academic by databases of research publications
[Newbold et al., 2022] and pre-print servers [Kirkham et al., 2020].

Second, we tested whether perceived experts are particularly important in
discussion around COVID-19 vaccines, asking: (3) Do perceived experts occupy
key positions within the coengagement network (i.e., as central and bridging
nodes)? and (4) Are perceived experts more influential than other individual
users? First, we tested whether perceived experts were disproportionately part
of the group of highly central users in the anti-vaccine and pro-vaccine commu-
nity based on degree, betweenness, and eigenvector centrality Table 1. We also
tested whether perceived experts were overrepresented among the users with
the greatest community bridging scores relative to their share of the popula-
tion. Second, we conducted propensity score matching to assess whether, on
average, perceived experts received more engagements (i.e., likes and retweets)
and had greater network centrality compared to other users with similar pro-
file characteristics and posting behaviors who were not perceived experts. We
conducted this analysis for both communities separately, hypothesizing that:
perceived experts experienced an influence boost in both the anti-vaccine com-
munity (H1) and the pro-vaccine community (H2). We then compared the size
of this effect between the two communities, hypothesizing that perceived experts
experienced a larger influence boost within the anti-vaccine community due to
source-message incongruence (H3).
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Figure 1: The coengagement network of users tweeting about COVID-
19 vaccines is divided into two large communities. Users are repre-
sented as circles and scaled by degree centrality. Edges connect users that were
retweeted at least twice by at least ten of the same users. Nodes in the two
largest communities detected using the Infomap algorithm are colored in pink
(anti-vaccine) and green (pro-vaccine). Shades indicate account type: excluded
from analyses (light); individual perceived non-expert (medium); and perceived
expert (dark). Nodes outside of the two largest communities are gray. Insets
provide more detailed views of: (A) the main component of the anti-vaccine
community, (B) bridges between the pro- and anti-vaccine communities, and
(C) the main component of the pro-vaccine community. Each edge is colored
based on the color of one of the two nodes it connects, randomly selected. A
higher-resolution image without annotations is available as Supplemental Fig-
ure 6.
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3 Results

3.1 Perceived experts are present throughout the coen-
gagement network, including in the anti-vaccine com-
munity

The coengagemement network consisted of 7,720 accounts (nodes) linked by
72,034 edges (Figure 1). 5,171 of those accounts had English language profiles
and appeared to correspond to individual users. 24 of the individual users
with English profiles added or removed expertise cues in their profiles over the
course of the study and were thus excluded from the analysis. Of the remaining
5,147 individual users, 13.1% (678 users) were perceived experts. Perceived
experts rarely provided cues of expertise in their name alone. Instead, almost
all users indicated expertise in their description, with approximately half of
users including expertise cues in both their name and description (Supplemental
Figure 7). There was substantial agreement between coders on whether a user
was in an excluded category, a perceived non-expert, or a perceived expert
(κ = 0.715).

The two largest communities contained 79.6% of total accounts and 66.1% of
English-language individual accounts in the network. Stance toward COVID-19
vaccines by users with the greatest degree centrality was relatively consistent,
meaning that very few users posted a combination of tweets that were positive
and negative in stance, although most users posted some neutral tweets as well
(Supplemental Figure 8). Further, stance was generally shared within commu-
nities; popular tweets by central users in the anti- and pro-vaccine communities
almost exclusively expressed negative and positive stances, respectively, or neu-
tral stances, with a few exceptions. Although there was moderate inter-rater
reliability (κ = 0.567) between coders on whether individual tweets were nega-
tive, positive or neutral about vaccines, there was high agreement on the overall
stance of each user (κ = 0.805 for whether a given user posted more anti-vaccine
tweets, pro-vaccine tweets, or equal numbers of either).

The pro-vaccine community was larger than the anti-vaccine community
(3,443 and 2,704 users respectively). The anti-vaccine community was made up
of a large, densely connected component split into two communities and linked
to two additional medium-sized subcommunities (Figure 1A), which were dom-
inated by users tweeting in languages other than English (Italian and French)
(see Supplemental Figure 10 and Supplemental Table 4 for visualization and
further discussion of subcommunities). The pro-vaccine community similarly
consisted of one large component that was connected to the next largest com-
munity, which was focused on vaccination in India, and two medium-sized sub-
communities (Figure 1C). The largest component of the pro-vaccine community
was divided into two subcommunities, one of which was dominated by non-
individual accounts. Perceived experts were present in both communities, but
constituted a larger share of individual users in the pro-vaccine community (17.2
% or 386 accounts) compared to the anti-vaccine community (9.8 % or 185 ac-
counts) (Figure 3). The two communities were connected by a few bridging
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nodes, including some perceived experts (Figure 1B).

3.2 Perceived experts in the anti-vaccine community share
both low quality and academic sources

We found marked differences in sharing of low quality and academic sources
depending on community and perceived expertise Figure 2. For both types of
sources, we calculated a user-level metric (the proportion of users who shared
at least one link of a given type; Figure 2B, D) and a link-level metric (the
proportion of all links shared during the study period that were of a given type;
Figure 2A, C). Perceived experts posted more frequently, and included links in
a greater proportion of their posts (Supplemental Figure 9)

Compared to the pro-vaccine community, perceived experts and perceived
non-experts in the anti-vaccine community shared low quality sources at sig-
nificantly greater rates (p < 0.001 for proportion of links and proportion of
users). Low quality sources were almost exclusively shared in the anti-vaccine
community, although low quality sources generally comprised a relatively small
proportion of assessed links (Figure 2A, B). Many users in the anti-vaccine com-
munity shared at least one low quality link (30% of perceived experts and 25%
of perceived non-experts) compared to fewer than 0.5% of users in the pro-
vaccine community (two perceived experts and seven perceived non-experts)
(Figure 2B). Compared to perceived experts, perceived non-experts in the anti-
vaccine community shared low quality sources as a significantly greater propor-
tion of all of their links (p = 0.015, Figure 2A), but there was no statistically
significant difference in the proportion of users who shared at least one low
quality source (p = 0.191, Figure 2B).

In both communities, perceived experts shared academic research links at a
significantly greater rate compared to other individual users (Figure 2C, D) (p <
0.001 for proportion of links and proportion of users sharing academic sources).
There was a slightly greater proportion of academic link-sharing for perceived
experts in the pro-vaccine community compared to the anti-vaccine community,
which was statistically significant at the link level (p = 0.028, Figure 2C) but
not at the user level (p = 0.074, Figure 2D).
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Figure 2: Users in the anti-vaccine community share low quality
sources and perceived experts share academic research. Each panel
compares a different metric of link-sharing by perceived experts and perceived
non-experts in the anti- (pink) and pro- (green) vaccine communities. The met-
rics are: (A) proportion of checked links that were from low quality sources, (B)
proportion of users that shared at least one low quality source, (C) proportion
of checked links that were from academic research sources, and (D) proportion
of users that shared at least one academic research source. 95% binomial pro-
portion confidence intervals are indicated by black error bars.

3.3 Perceived experts are overrepresented as central and
bridging users

Although perceived experts represented a relatively small share of the individual
users in the coengagement network, they disproportionately occupied important
positions in the network as central and bridging nodes (Figure 3, Figure 4). Per-
ceived experts were overrepresented among users with the greatest betweenness,
degree, and eigenvector centrality in both communities, although this effect was
not always statistically significant for the pro-vaccine community (Figure 3).
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Perceived experts in both communities were highly overrepresented among
the five hundred users with the greatest betweenness centrality (p < 0.001 for
both communities) and overrepresented among the fifty users with the greatest
betweenness centrality by a factor of about two (p = 0.014 and p < 0.001 for
the anti- and pro-vaccine communities respectively) (Figure 3).

Ranking on degree centrality and eigenvector centrality, perceived experts
were more strongly overrepresented in the anti-vaccine community compared to
the pro-vaccine community (Figure 3). Perceived experts in the anti-vaccine
community were about two times more prevalent in the group of central users
(20% of the fifty top users ranked on both metrics) compared to their share
of the population, while perceived experts in the pro-vaccine community were
overrepresented by a factor of approximately 1.6. By both metrics, perceived
experts in the anti-vaccine community were significantly overrepresented in the
500 most central users (p = 0.001 and p < 0.001 for degree and eigenvector
centrality respectively) and the fifty most central users (p = 0.014 for both
degree and eigenvector centrality). In the pro-vaccine community, perceived
experts were significantly overrepresented in the 50 most central users (p = 0.032
for both degree and eigenvector centrality) but not in the 500 most central users
(p = 0.1038 and p = 0.082). It is unsurprising that the results for eigenvector
and degree centrality were similar given that the PageRank algorithm used
to compute eigenvector centrality is proportional to degree centrality on an
undirected graph [Grolmusz, 2015].

Perceived experts were significantly overrepresented in the group of the 500
and ten most important bridges between the pro- and anti-vaccine communities
(p < 0.001, p = 0.001 respectively), but not significantly overrepresented in the
fifty most important bridges (p = 0.09). Figure 4. About 20% of the top 500
and top fifty users ranked by community bridging scores were perceived experts,
and five of the 10 users with the greatest community bridging scores were per-
ceived experts (Figure 4, Figure 1B). There was little variation in which users
were highly ranked between different network metrics (Supplemental Figure 12,
Supplemental Figure 13, Supplemental Figure 14, Supplemental Figure 15).

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3: Perceived experts are overrepresented as the most central
users in the pro-vaccine (green) and anti-vaccine (pink) communities.
Plots are arranged in a grid where each row corresponds to users in one of the
two largest communities: the anti- and pro-vaccine communities (top and bot-
tom respectively). Each column corresponds to a different centrality metric:
betweenness centrality (left), degree centrality (middle), and eigenvector cen-
trality (right). For each plot, we subset the network to the n nodes with the
greatest values for a given centrality metric, where n is full population size (all
individual users in the community), 500, or 50 (x-axis). Bar height indicates
the proportion of users in each subset that are perceived experts and error bars
give 95% binomial proportion confidence intervals. Stars above the error bars
indicate whether perceived experts are significantly overrepresented within a
given sample of central users (one star indicates p < 0.05, two stars indicate
p < 0.01, three stars indicate p < 0.001).
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Figure 4: Perceived experts disproportionately act as key bridges be-
tween the pro-vaccine and anti-vaccine communities. Bar height in-
dicates the proportion of users in each population sample that are perceived
experts and error bars give 95% confidence intervals for the proportions. The
x-axis indicates the size of each subset (n), corresponding to the full population
of 5,147 (all individual users as a basis of comparison), and the 500, 50, or 10
users with the greatest community bridging score (x-axis). Stars above the error
bars indicate whether perceived experts are significantly overrepresented within
a given sample of bridging users (one star indicates p < 0.05, two stars indicate
p < 0.01, three stars indicate p < 0.001).

3.4 Perceived experts are more influential than other in-
dividuals in the anti- and pro- vaccine communities

Using propensity score matching, we achieved excellent balance across match-
ing covariates within the anti-vaccine community (Supplemental Figure 16) and
good matching within the pro-vaccine community for all variables except for
the percent of posts with links (Supplemental Figure 17 and Supplemental
Figure 18). There were minimal differences in the results of propensity score
matching with and without matching on subcommunities (compare Figure 5
and Supplemental Figure 19; Supplemental Table 6, Supplemental Table 7, and
Supplemental Table 8). Using these propensity-matched pairs for comparison,
on average, perceived experts received more engagements (likes and retweets)
on their posts, but were not more central than other individual users (Figure 5,
Supplemental Figure 19, Supplemental Table 6, Supplemental Table 7, Supple-
mental Table 8).

Perceived experts in the anti-vaccine community received 20% (95% CI: 3 -
43%) more retweets and 37% (95% CI: 9 - 63%) more likes on their median post
than would be expected if they were not perceived experts (Figure 5, Supple-
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mental Figure 19, Supplemental Table 6). We also found a significant effect of
perceived expertise when using an alternative metric, the h-index, to assess en-
gagements across tweets posted during the time period (ATT for natural logged
retweets: 1.90 (95% CI: 0.36-3.44); ATT for natural logged likes: 3.43 (95% CI:
1.11-5.76)) (Figure 5, Supplemental Figure 19, Supplemental Table 6). In con-
trast to these measures of engagement, perceived expertise did not significantly
affect centrality (betweenness, degree, and eigenvector) within the anti-vaccine
community on average (Figure 5, Supplemental Table 8, Supplemental Table 6),
although we found in the previous section that perceived experts were overrep-
resented in the tail of the distribution as highly central users compared to the
full (unmatched) set of perceived non-experts (see subsection 7.8 for further
discussion reconciling these two results).

Perceived experts in the pro-vaccine community also had a positive ATT
across engagement metrics and additionally had a significantly positive ATT
for betweenness centrality (Figure 5, Supplemental Figure 19, Supplemental
Table 7). Although perceived experts in the pro-vaccine community tended to
have a greater ATT across all influence metrics than those in the anti-vaccine
community, the differences in ATT between groupswere not statistically signifi-
cant for any influence metric (Supplemental Figure 20, Figure 5, Supplemental
Table 9). Matching results were robust to matching parameters and exclusion of
different matching covariates (Supplemental Figure 22, Supplemental Figure 23,
and Supplemental Figure 24).
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Figure 5: In the anti-vaccine and pro-vaccine communities, perceived
experts receive greater engagements compared to other users. For
each influence metric (y-axis, Supplemental Table 3), we plot the standardized
average treatment effect on the treated (ATT) as a point and corresponding
95% confidence interval. Values are shown for the matching analysis directly
comparing the anti-vaccine (pink) and pro-vaccine (green) communities (corre-
sponding to Supplemental Table 8). Positive values (to the right of the vertical
line) indicate an influence boost for perceived experts. Instances where the
effects were significantly greater than zero (p < 0.05) are indicated with an ad-
ditional circle around the point estimate.

4 Discussion

The anti-vaccine community contains its own set of perceived experts. These
perceived experts represent 9.8% of individual users within the anti-vaccine
community, comprising a substantial group that extends beyond the handful of
high-profile anti-vaccine influencers with biomedical credentials who have been
noted anecdotally [Smith, 2017, The Virality Project, 2022]. Although surveys
have found broad support for COVID-19 vaccination among medical providers
[Callaghan et al., 2022, Bartoš et al., 2022], 28.9% of perceived experts in the two
largest communities of the coengagement network were part of the anti-vaccine
community, a proportion similar to those reported by other studies of COVID-
19 vaccine attitudes expressed by medical professionals on Twitter [Ahamed
et al., 2022, Kahveci et al., 2022, Bradshaw, 2022]. Anti-vaccine perceived ex-
perts are therefore overrepresented on Twitter compared to the share of actual
biomedical experts who oppose Covid-19 vaccines, which may lead observers
to underestimate the scientific consensus in favor of COVID-19 vaccination, in
turn reducing vaccine uptake [Efstratiou and Caulfield, 2021, Bartoš et al., 2022,

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


Motta et al., 2023].
Within the anti-vaccine community, perceived experts may combine misin-

formation with claims that appear scientific. Low quality sources in the coen-
gagement network were overwhelmingly shared by the anti-vaccine community,
and perceived experts shared low quality sources at similar rates compared to
other individuals (Figure 2), suggesting that they directly contribute to the
widespread misinformation in the anti-vaccine community noted by other stud-
ies [Memon and Carley, 2020, Muric et al., 2021, Jamison et al., 2020]. Perceived
experts, including those in the anti-vaccine community, performed expertise by
sharing and commenting on academic articles at much higher rates compared
to other individual users (Figure 2C, D). Misinformation claims containing ar-
guments that appear scientific may be particularly effective at reducing vaccine
intent [Loomba et al., 2021], suggesting that perceived experts may be respon-
sible for some of the most compelling anti-vaccine claims.

Perceived experts may also be well-poised to spread their claims online,
as they disproportionately occupied key network positions between anti- and
pro-vaccine communities and within the anti-vaccine community (Figure 3, Fig-
ure 4). Across various centrality metrics, perceived experts were overrepresented
in the group of highly central users Figure 3, meaning that they reached (and
had posts shared by) large and unique audiences. Perceived experts were half of
the ten individuals users with the greatest community bridging scores, meaning
that they were shared by audiences for users in both the anti- and pro-vaccine
communities. Within this set of five perceived experts, four made highly tech-
nical arguments in favor of vaccines and corrected potential misunderstandings
related to the frequency of vaccine-linked adverse events and to the severity of
breakthrough infections reported at the time. Such users could play an impor-
tant role in changing vaccine stance, although the two communities may share
distinct subsets of their tweets for substantially different reasons [Van Schalk-
wyk, 2019, Beers et al., 2023]. For example, anti-vaccine audiences may retweet
reports of adverse events out of concern that vaccines are unsafe while pro-
vaccine audiences may share the same content to emphasize their rarity.

Our hypothesis that perceived experts are, on average, more influential than
other users in the anti-vaccine community was supported by the finding that
they received more engagement (i.e., likes and retweets) on their vaccine-related
posts than similar users without credentials in their profiles Figure 5. We also
found evidence of this effect in the pro-vaccine community. Perceived experts
were not significantly more central on average than a matched set of perceived
non-experts (except in the case of perceived experts in the pro-vaccine com-
munity who had greater betweenness centrality than perceived non-experts)
Figure 5. These findings may be explained by the observations that match-
ing covariates (e.g., follower count, post frequency) contribute importantly to
centrality (Supplemental Figure 21) and that overrepresentation of perceived
experts in the set of highly central users (i.e., the tail of the distribution) may
not be sufficient to significantly increase the mean centrality of perceived experts
compared to perceived non-experts Figure 3. There was no significant difference
in the influence boost for perceived experts between the anti- and pro-vaccine
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communities, contradicting our hypothesis that perceived experts hold a greater
advantage within the anti-vaccine community. However, this finding suggests
that anti-vaccine audiences do value expert opinion, at least when it confirms
their own stances, a result aligned with other studies that have found that scien-
tists and medical professionals are popular sources amongst vaccine opponents
[Koltai and Fleischmann, 2017, Kata, 2010, Prasad, 2022, Hughes et al., 2021,
Bradshaw et al., 2022, Boucher et al., 2021, Haupt et al., 2021].

In sum, this works goes beyond high-profile examples of anti-vaccine per-
ceived experts to systematically characterize the sizable population of anti-
vaccine perceived experts who have a significant impact in the the Twitter
conversation about COVID-19 vaccines. Our findings have implications for in-
terventions focused on education of medical professionals and the general public.
Educational interventions that encourage trust in science could backfire if in-
dividuals defer to anti-vaccine perceived experts who share low quality sources
[O’Brien et al., 2021]. Instead, education efforts should focus on teaching the
public how to evaluate source credibility to counter the potentially fallacious
heuristic of deferring to individual perceived experts [O’Brien et al., 2021, Os-
borne and Pimentel, 2022, Sundar, 2007]. Although the sample of perceived
experts in this study is not representative of the broader community of experts,
surveys have found that a non-negligible minority of medical students and health
professionals are vaccine hesitant and believe false claims about vaccine safety
[Lucia et al., 2021, Mose et al., 2022, Callaghan et al., 2022, Le Marechal et al.,
2018]. Given that perceived experts are particularly influential in vaccine con-
versations (Figure 3, Figure 4, Figure 5) and that healthcare providers with
more knowledge about vaccines are more willing to recommend vaccination, ef-
forts to educate healthcare professionals and bioscientists on vaccination and to
overcome misinformation within this community may help to improve vaccine
uptake [Paterson et al., 2016].

In addition to helping people evaluate vaccine information, interventions may
focus on improving information quality by focusing on communications, social
media platform design, and expert community self-governance. From a commu-
nication standpoint, greater engagement by perceived experts recommending
COVID-19 vaccines and debunking medical misinformation may help to correct
public misunderstandings about expert consensus based on the overrepresen-
tation of anti-vaccine perceived experts on social media [Bartoš et al., 2022].
However, perceived experts already constituted one fifth of individuals in the
pro-vaccine community according to our analysis [Hernandez et al., 2021, Gal-
lagher et al., 2021, Hernández-Garćıa et al., 2021] and it is not clear whether
individual pro-vaccine communicators will be especially persuasive to people
who are already engaging with perceived experts who oppose vaccines. Instead,
emphasizing the scientific consensus in favor of COVID-19 vaccines and avoid-
ing false balance in communication may help ameliorate misconceptions [Bartoš
et al., 2022, Ceccarelli, 2011]. Further, perceived experts and their professional
organizations may build trust and disseminate health information more effec-
tively by developing networked communication strategies to rapidly, openly, and
factually address false claims that gain traction while clearly explaining areas
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of uncertainty and directly addressing legitimate safety concerns (as several of
the most central perceived experts in the pro-vaccine community did during the
study period, see 7.4) [Carpiano et al., 2023]. User-provided expertise cues were
sufficient to garner greater engagement on Twitter in vaccine-related discussions,
suggesting that individuals could misrepresent their own credentials to more ef-
fectively spread anti-vaccine misinformation (Figure 5). Platforms may counter
potential deception by establishing a mechanism to verify academic and profes-
sional credentials and creating signals within profiles to identify authorities on
health-related topics. These measures were implemented on Twitter in the early
months of the COVID-19 pandemic, but have since been abandoned. Finally,
this work illustrates the importance of self-regulation within expert communi-
ties, particularly as medical boards clarify that health professionals who spread
vaccine misinformation may face disciplinary consequences [Federation of State
Medical Boards Ethics and Professionalism Committee, 2022, SoRelle, 2022].

Limitations and Extensions
This study relies on proxies for tweet content and user activity that may

miss important variation and nuance in stance. Breaking the network into pro-
and anti-vaccine communities is common across studies of social media net-
works [Hagen et al., 2022, Sharma et al., 2021, ?, Jamison et al., 2020], and
stance was generally consistent across popular tweets in either community (Fig-
ure 8), but there were several notable exceptions. Positive tweets from users
in the anti-vaccine community tended to cite vaccine efficacy as an argument
against mandating vaccines, while negative tweets from users in the pro-vaccine
community (particularly those by perceived experts) praised vaccine regulators
for responding to safety signals. Further, sharing a particular misinformation
or academic link may not constitute endorsement, particularly in fact-checking
contexts. Although academic sources were shared in the anti-vaccine commu-
nity, academic sources may be misrepresented by these users [?Beers et al.,
2022, Kata, 2010] or include articles that have been retracted [Van Schalkwyk,
2019, Abhari et al., 2023]. Future work may examine which academic links
were shared within the anti-vaccine community and how these sources were in-
terpreted. More detailed content analysis may reveal important differences be-
tween the communities beyond attitudes toward vaccine (e.g. attitudes toward
non-pharmaceutical interventions and perceptions of severity of COVID-19 in-
fection), heterogeneity in vaccine opinion within groups, and specific rhetorical
strategies utilized by perceived experts in either group [Bradshaw et al., 2020,
Maddox, 2022].

An important limitation of our study is that we were unable to assess how
many users are exposed to a given tweet. By relying on engagements as an
indicator of tweet popularity, we may underestimate the true reach of content.
We also could not ascertain how exposure to vaccine-related information in this
study influenced health decision-making and behavior, questions that could be
directly evaluated in an experimental setting [Jiménez et al., 2018]. Further
work may additionally examine the relative contribution of prestige bias to vac-
cine decision-making compared to other types of biases and how the effects of
perceived expertise are moderated by other source characteristics (e.g., trust-
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worthiness and competence) [Pornpitakpan, 2004] and other forms of bias (e.g.,
confirmation bias, repetition bias, or success bias) [Acerbi, 2016, Jiménez et al.,
2018, Brand et al., 2020, Berl et al., 2021, Nadarevic et al., 2020, Lachapelle
et al., 2014, Lin et al., 2016].

This analysis is limited to a single month, based on events in the United
States and English keywords, constrained to Twitter, and focused on conversa-
tions about COVID-19 vaccination. Initial vaccination capacity, trust in experts,
and vaccine uptake vary considerably between countries [Wilson and Wiysonge,
2020] and our own analysis found considerable geographically clustering across
the coengagement network (Figure 10). Further work may examine how the role
of perceived experts in conversations about vaccination differed between regions
and across different time periods (including prior to the COVID-19 pandemic
and after the emergence of variants of concern with high breakthrough infec-
tion rates). Although we excluded the relatively small set of individuals who
added or removed signals of expertise from their profile during the month of
the study, extending the study period to expand this set of users could enable
further examination of how user behavior and influence changes depending on
perceived expertise [Hasan et al., 2022]. Twitter users are not representative of
the general population [Wojcik and Hughes, 2019], and patterns in vaccine con-
versations on social media do not necessarily reflect actual vaccination trends
[Cascini et al., 2022, Tavoschi et al., 2020]. The generalizability of these findings
should be assessed on different social media platforms [Jones et al., 2012, Cascini
et al., 2022, Tangcharoensathien et al., 2020]. The role of experts, particularly
those who take counter-consensus positions, is relevant across other scientific
topics including climate change, tobacco, and AIDS etiology and treatment
[Oreskes and Conway, 2022, Epstein, 1996]. These methods could be applied to
compare the role of perceived experts in conversations about different scientific
and non-scientific topics (e.g., politics and entertainment) to test the extent to
which domain specific credentials are necessary to be perceived as an experts
and compare the effects of perceived expertise relevant to different conversations
(e.g., whether politicians speaking on political matters receive an influence boost
comparable to that of medical professionals and scientists discussing COVID-19
vaccines).

Conclusion We found that the set of anti-vaccine perceived experts extends
far beyond prominent examples noted by others previously [Smith, 2017, The
Virality Project, 2022], suggesting that they should be addressed as a unique and
sizable group that blends misinformation with arguments that appear scientific.
We also found evidence that perceived experts are more influential than other
individuals in the anti-vaccine community, as they disproportionately occupied
central network positions where they could reach large audiences and received
significantly more engagements (20% more likes and 37% more retweets) on their
vaccine-related posts compared to perceived non-experts. Perceived experts
are not only some of the most effective voices speaking out against vaccine
misinformation; they may be some of its most persuasive sources.
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5 Methods

5.1 Data collection

The Institutional Review Board of Washington University determined that this
study (STUDY00017030) was exempt. Our analysis was conducted on a subset
of collections of public tweets containing keywords related to vaccines and the
COVID-19 pandemic, retrieved and stored in by the University of Washington
Center for an Informed Public in real-time as they were posted. Tweets that
were later deleted and public tweets from accounts that were suspended or
became private are included in the dataset.

We constrained our search period to April of 2021, noting that all individuals
sixteen and older were eligible for vaccination by April 19th, marking this time
period as an especially critical window for vaccine decision-making [Roy, 2021].
Further, administration of the Johnson & Johnson (Janssen) vaccine was paused
in the United States between April 13th and April 23rd while the Centers for
Disease Control and Prevention (CDC) and Food and Drug Administration
(FDA) investigated a safety signal involving six reported cases of severe blood
clots [U.S. Food and Drug Administration, 2021]. Focusing on April of 2021 also
allows us to examine how different communities reacted to credible news of a
serious but rare vaccine safety signal. During the same time period, fact checkers
and researchers responded to several false claims about vaccination, including
rumors that vaccinated people were able to “shed” vaccine components that
might infect and harm unvaccinated people [The Virality Project, 2021].

To focus our analysis on content related to COVID-19 vaccines, we selected
tweets (i.e., posts) within the collections that mentioned keywords related to
vaccines in general or the specific manufacturers of the three COVID-19 vac-
cines initially offered in the United States (Supplemental File 1). Although this
protocol focuses on vaccine administration in the United States and English
language, tweet selection was not constrained to a specific geographic region.
In total, we retrieved 4,276,842 unique tweets including quote tweets (when an-
other post is shared with commentary) and replies (a direct response to another
user’s tweet) from April. 5,523,595 unique users participated in the Twitter
conversation about COVID-19 vaccines during the study period by either post-
ing original content or retweeting (i.e., sharing) another user’s tweet on the
topic. We additionally retrieved retweets, quote tweets, and replies linked to
tweets in the April collection that were posted within 28 days of the original
tweet (extending the dataset to May 28th) to compare the number of likes and
retweets each tweet in the April study period received across a window of the
same length (four weeks).

We randomly generated a unique numeric identifier for each user to protect
user privacy (particularly for users who are not public figures) while allowing
our findings to be reproduced. Individual users are not named in the analyses,
reinforcing that we aim to characterize the group of perceived experts within
the anti-vaccine community instead of focusing on individual, high-profile ex-
amples. User profiles and numeric identifiers for accounts used by Twitter were
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stored separately from tweets, which were instead linked to the anonymous
identifiers we assigned. We also stored a dictionary that allows for translation
between these two distinct numeric identifiers and utilized the dictionary to
connect statistics about tweets to properties of the network and users (e.g., to
determine community stance after tagging the stance of a sample of popular
tweets, to compare the types of links shared depending on perceived expertise
and community, and to collect matching covariates based on Twitter activity
and engagements). In tweets we coded for stance, we anonymized mentions of
other usernames and removed links to other posts and images on Twitter to
prevent user identification. Therefore, researchers were blinded to user identity
when assessing tweet stance. We have made tweet and user information relevant
to results in this study publicly available without the linking dictionary.

5.2 Coengagement network construction

We examined the activity of influential users with shared audiences by generat-
ing a coengagement network. First, we constructed a directed graph where each
edge connects a user to another user whom they have retweeted at least twice.
Next, we used a Docker container developed by Beers et al. [2023] to transform
the network into an undirected graph. Edges link accounts that were retweeted
at least twice by at least ten of the same users. The resulting graph therefore
filters users to those that received some amount of repeated engagement from
several accounts rather than those that produced a single viral tweet. We used
the Infomap hierarchical clustering algorithm implemented at mapequation.org
to detect communities within the coengagement network. Infomap balances the
detection of potential substructures (i.e., subcommunities within larger commu-
nities) against concisely describing a random walker’s movements through the
network to determine the total number of levels to use [Rosvall and Bergstrom,
2008, Holmgren et al., 2022]. The subcommunities detected using Infomap cor-
respond well to communities detected using the Louvain method, an alternative
community detection algorithm (Supplemental Figure 10, Supplemental Fig-
ure 11, Supplemental Table 4). Coengagement networks were visualized using
the open-source software package Gephi with the ForceAtlas2 layout algorithm
[Bastian et al., 2009, Jacomy et al., 2014].

5.3 Tagging profiles

Based on username, display name, and user description collected each time a
user tweeted or was retweeted during the study period, we manually labeled
each profile in this group as a perceived expert or not (Supplemental Figure 7).
The lead author tagged all users in the coengagement network and two addi-
tional authors labeled a subset of 500 users to test robustness of tags based on
interrater reliability. We first noted whether a profile indicated that the user
primarily tweeted in a language other than English. Because we were unable to
assess non-English expertise signals and tweets associated with these users, who
may also have reached a substantially different audience compared to English-
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language accounts, we excluded non-English accounts from our analysis. We
also noted accounts that appeared not to represent individuals (e.g., accounts
for media groups, non-profit organizations, governmental agencies, and bot ac-
counts). Non-English and non-individual accounts (2,549 accounts in total)
remained in the network for visualizations and calculations related to network
centrality but were excluded from analyses focused on comparing individuals
with and without signals of expertise in their profiles.

For the remaining individual profiles, we noted whether there were signals
of expertise in the account username or display name (which are listed with
tweets in a user’s feed) or the account description (which is only visible if a
user mouses over the author’s tweet or directly visits the account) (Supple-
mental Figure 7). Signals of expertise included academic prefixes (e.g., Dr. or
Professor), suffixes (e.g., MD, MPH, RN, PhD), and professional information
(e.g., scientist, retired nurse). We limited our definition of perceived expertise
to include training or professional experience in a potentially relevant field but
excluded individuals who expressed an interest in a related topic without pro-
viding qualifications (e.g., “virology is the coolest”). We included anonymous
accounts and ones that may have been parodies (e.g., “Dr. Evil” and “The Mad
Scientist”) since we expect that users evaluate profiles based on heuristics and
without investigating the veracity of information provided [Sundar, 2007]. We
assumed that medical and wellness professionals, including practitioners of al-
ternative medicine, may broadly be perceived as experts regardless of specialty
[Jiménez and Mesoudi, 2019]. To focus on biomedical expertise, we did not code
users from other fields as perceived experts (e.g., science journalists, disability
rights advocates, and governmental officials without biomedical backgrounds),
acknowledging that these sources may provide trusted and knowledgeable per-
spectives relevant to health decision-making.

Users that indicated expertise in any part of their profile (names, descrip-
tion, or both) at any point in time were tagged as perceived experts based
on experimental evidence that users with biomedical expertise signals in their
profiles are perceived to have greater expertise on COVID-19 vaccines [Jalbert
et al.]. Users that changed their profiles over the course of the study in a manner
that changed whether they might be perceived as an expert (24 accounts) were
excluded from the following analyses.

5.4 Determining community stance

To understand the stance of individuals in the two largest communities, we an-
alyzed tweets that received retweets during April 2021. Of the 251,040 tweets
satisfying those criteria, we tagged a subset posted by the ten perceived experts
and perceived non-experts in both communities with the greatest degree cen-
trality. We collected the ten most retweeted tweets by the forty selected users.
A few of the users had fewer than ten tweets that were retweeted during the
study period, so we instead retrieved all of their tweets that received retweets
in April. In total, we reviewed 392 tweets.

For each tweet, three coders assessed stance toward COVID-19 vaccines as
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positive, negative, or neutral. Stance was evaluated as positive if the tweet sup-
ported vaccination, including by providing evidence that COVID-19 vaccines
are safe and effective. Tweets expressing the opposite view were coded as neg-
ative. Stance was often implicit. For example, calls for deployment of vaccines
to “hotspots” with elevated disease burden suggest that the author believes the
vaccine can prevent disease, even if this rationale is not stated directly. Unless
the author refuted or negatively reacted to a quote they provided, a tweet they
quote tweeted, or an article they linked, the post was assumed to take the same
stance as referenced sources. Tweets containing multiple contrasting viewpoints
or providing information without a clearly implied position (e.g., sharing statis-
tics about the pace of vaccination without any additional commentary) were
coded as neutral. The neutral tag was also applied to tweets if the coder was
uncertain about the argument being made or context was missing (e.g., criticism
of an article that could not be retrieved). We noted many tweets during this time
period that opposed vaccine mandates and coded these tweets as neutral unless
the author justified their position using a specific argument regarding vaccine
safety or efficacy. Tweets comparing multiple types of vaccines with negative
stances toward some and positive stances toward others were tagged neutral.
Tweets that took a uniform stance toward different types of COVID-19 vaccines
while explaining their differences were coded based on the corresponding stance.
Based on this analysis, we determined that negative stances toward COVID-19
vaccines were prevalent in tweets from one community, which we refer to as
the anti-vaccine community in following analyses (Supplemental Figure 8). The
other community, in which tweets mainly expressed positive stances, was the
pro-vaccine community that served as a basis of comparison.

5.5 Academic and low-quality link-sharing

We assessed the types of sources users referenced in their tweets by comparing
links shared to databases of: (1) low quality sources and (2) academic research
journals and pre-print servers. We expanded shortened URLs using the RCurl
package in R [Temple Lang, 2023]. In some cases, this process timed out or
links connected to other content shared on Twitter, in which case links were ex-
cluded from the following analysis. Across community and perceived expertise,
we compared the average number of tweets per user, proportion of tweets with
links, and proportion of links that were checked, and number of links that were
checked to ensure there was minimal risk of differences in link-sharing behavior
leading to bias in the following analyses (Supplemental Figure 9). We checked
the remaining 52,073 links, first determining whether the domain name was
rated “low” or “very-low” quality by Media Bias/Fact Check according to the
Iffy Index of Unreliable Sources [Golding, 2023, Van Zandt], a common proxy
for misinformation sharing [Sharma et al., 2021, DeVerna et al., 2022]. To as-
sess sharing of academic research, we also checked links to research publications
[Newbold et al., 2022] and pre-print servers used in biomedical and medical sci-
ences [Kirkham et al., 2020]. For perceived experts and perceived non-experts in
each of the two large communities, we calculated: (1) the proportion of assessed
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links from low quality or academic research sources and (2) the proportion of
total users that shared at least one link from a low quality or academic research
source in their original posts during April 2021. For each metric, we calculated

the binomial proportion 95% confidence interval as p̂±1.96∗
√

p̂(1−p̂)
n where p̂ is

the observed proportion and n is the total links or users in a given category. To
compare proportions for different categories of users, we conducted two propor-
tion one-tailed Z-tests with Yates’ continuity correction to account for the small
number of links from low quality sources shared by the pro-vaccine community.

5.6 Network centrality and bridging metrics

We calculated degree, betweenness, and eigenvector centrality to describe net-
work position using the igraph package in R [Csardi and Nepusz, 2006] (see
Supplemental Table 1 for a description of centrality metrics and their interpre-
tation). Specifically, we calculated eigenvector centrality using the PageRank
algorithm. We additionally detected nodes with audiences spanning the anti-
and pro-vaccine communities using a community bridging index calculated as
the minimum number of edges that a node has linking it to either of the two
communities.

We tested whether perceived experts were overrepresented within the group
of highly ranked users by each metric by calculating the proportion of perceived
experts in the top n users ranked by a given metric (where n varies between 500
and 50 for all metrics and ten for bridging score). Several perceived experts and
perceived non-experts had the same bridging scores, leading to ties for ranking
in the top 500 and 50 bridges. In these cases, we randomly drew 1,000 samples
from the tied users without replacement to complete the set of top bridges
and calculated the mean proportion of perceived experts across all samples. To
calculate the 95% confidence interval in these cases, we added the margin of error

(±1.96 ∗
√

p̂(1−p̂)
n ) to the .025th and 97.5th percentile proportion value across

the 1,000 samples. For the remaining metrics and subsets, we calculated the
binomial proportion 95% confidence interval as in the previous section except
when examining the ten top bridges, in which case we calculated the Wilson
score interval to account for the small sample size.

To test whether perceived experts were significantly overrepresented in each
sample of highly ranked individuals, we conducted two proportion Z-tests with
the alternative hypothesis that perceived experts were a significantly greater
proportion of the top n individuals than individuals in the complement (i.e.,
individuals who were not among the top n individuals ranked by a given metric).
When considering the top ten bridges, we instead used a Fischer’s exact t-test
to account for the small sample size. We reported p-values for significance tests.
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5.7 Matching to assess relative influence of perceived ex-
perts

This portion of the analysis was pre-registered on OSF Registries prior to hy-
pothesis testing (https://osf.io/6u3rn). We assessed how perceived exper-
tise affects influence using propensity score matching, a technique to select a
sample of individual perceived non-experts with a similar covariate distribu-
tion to perceived exerts in the dataset [Rosenbaum and Rubin, 1983]. We can
then compare the average influence between perceived experts and perceived
non-experts while adjusting for confounding from covariates that may predict
being a perceived expert without being a direct consequence of perceived ex-
pertise. Propensity score matching has been applied previously to compare the
effectiveness of different users in the context of online advertising [Yan et al.,
2018, Kuang et al., 2018] and to understand whether following prominent public
health institutions on Twitter impacts vaccine sentiment [Rehman et al., 2016].
Propensity score matching was performed using the MatchIt package in R [Ho
et al., 2011].

We matched on the following covariates: natural logged follower count at
the beginning of April 2021, total on-topic posts during the study period (i.e.,
posts included in our data set because they contained a COVID-19 vaccine key-
word), account creation date, whether the account is verified, percent of on-topic
posts containing links, percent of on-topic tweets that were original posts versus
retweets, posting time of day, and uniformity of posting date across the study
period (Supplemental Table 2). For the first two analyses focused on relative
influence within the anti-vaccine and pro-vaccine communities, we also matched
on subcommunity assignment based on the Infomap community detection algo-
rithm Figure 10. We used logistic regression to compute propensity score as the
predicted probability that each user is a perceived expert given their covariates.
Based on propensity scores, each perceived expert was matched with replace-
ment to their three nearest neighbor perceived non-experts. To test the first
two hypotheses about influence within the anti-vaccine and pro-vaccine com-
munities respectively, we included only users in either community. To test the
third hypothesis comparing the influence of perceived experts in the anti- versus
pro-vaccine community, we calculated the interaction of perceived expertise and
community. Sample sizes for all analyses are provided in Supplemental Table 5.

The outcome variables for influence are: eigenvector centrality, degree cen-
trality, betweenness centrality, natural logged median likes, natural logged me-
dian retweets, h-index for likes, and h-index for retweets (Supplemental Table 3).
h-index is the maximum number h such that the user wrote at least h origi-
nal tweets (including replies and quote tweets) that received at least h likes or
retweets. We calculated engagements (likes and retweets) for each tweet as the
maximum number observed for that tweet in our collection within twenty-eight
days of when it was posted. Importantly, we only retrieved like counts for a
given tweet when another user engaged with the tweet through a quote tweet
or retweet.

We then estimated the effect of perceived expertise on influence by calculat-
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ing the average treatment effect on the treated (ATT), which corresponds to the
difference in expected influence ((Y (T )) with and without perceived expertise
given that a user is a perceived expert (T = 1) with covariates drawn from the
distributions for the matched users (X):

ATT = E[Y (1)− Y (0)|T = 1, X]

ATT was estimated using the marginal effects package [Arel-Bundock, 2023].
We tested the robustness of our results to different matching parameters and
covariates, as displayed in Supplemental Figure 22, Supplemental Figure 23,
and Supplemental Figure 24.
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7 Supplemental Materials

7.1 Coengagement network visualization without annota-
tions

Figure 6: The coengagement network of users tweeting about COVID-
19 vaccines is divided into two large communities. Users are repre-
sented as circles and scaled by degree centrality. Edges connect users that
were retweeted at least twice by at least ten of the same users. Nodes in the
two largest communities detected using the Infomap algorithm are colored in
pink (anti-vaccine) and green (pro-vaccine). Shades indicate account type: non-
individual and non-English accounts excluded from analyses (light); individual
perceived non-expert (medium); and perceived experts (dark). Nodes outside
of the two largest communities are gray. Each edge is colored based on the color
of one of the two nodes it connects, randomly selected. Note that this figure is
identical to Figure 1 without annotations and in higher resolution.
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7.2 Keywords

Supplemental File 1: Keywords used to search collection for relevant
tweets. The asterisk (*) indicates a wildcard, meaning a set of alphabetical
characters of any length.

• vacc*

• vaxx

• jab

• shot

• immuniz*

• dose

• mrna

• pfizer,

• j&j

• jnj

• j & j

• j n j

• j and j

• johnson and johnson

• johnson & johnson

• janssen

• moderna

29

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


7.3 Variable definitions

This section provides explanations of variables used in our analyses, including
centrality metrics (Supplemental Table 1) and matching covariates (Supplemen-
tal Table 2) and influence metrics used in propensity score matching (Supple-
mental Table 2).

Metric name Description
Coengagement interpreta-
tion

Degree cen-
trality

Number of edges connect-
ing a given node to other
nodes

Selects users who share an
audience with many other
users; proxy for audience
size

Betweenness
centrality

Number of times a given
node appears along the
shortest path between two
other nodes in the network

Selects users who share
audience with users that
otherwise do not have
much overlap in their au-
diences

Eigenvector
centrality

Recursively assigns nodes
a value based on whether
they are connect to other
nodes with high eigenvec-
tor centrality

Selects users who share
audiences with other users
whose audiences overlap
with those of many others
in the coengagement net-
work

Community
bridging

Takes the minimum of the
number of edges that a
node has connecting it to
nodes in any focal commu-
nities

Selects users who share an
audience with relatively
many users in both the
anti- and pro-vaccine com-
munities

Table 1: Description of different centrality metrics and their interpretation in
the context of coengagement networks.
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Matching covariates Description
Creation date Continuous variable. Date and time that account was created.
Follower count (log) Continuous variable. Natural log of the earliest follower count retrieved

for a user within the dataset.
Account verified? Binary variable. Whether account was verified at any point in April of

2021. Note: twelve users in the dataset, eight of whom were in the two
largest communities, became verified during the study period.”

On-topic post count (log) Continuous variable. Natural log of the total number of posts (including
quote tweets and replies) and retweets by a user in April containing
COVID-19 vaccine keywords.

Percent retweets Continuous variable. Percent of user’s on-topic posts in April that were
retweets.

Percent with links Continuous variable. Percent of user’s on-topic posts in April that
contained links.

Morning poster? Binary variable. Whether at least one third of a user’s on-topic posts
were between 6 AM and noon Eastern Time.

Afternoon poster? Binary variable. Whether at least one third of a user’s on-topic posts
were between noon and 6 PM Eastern Time.

Evening poster? Binary variable. Whether at least one third of a user’s on-topic posts
were between 6 PM and midnight Eastern Time.

Night poster? Binary variable. Whether at least one third of a user’s on-topic posts
were between midnight and 6 AM Eastern Time.

Uniform post dates? Binary variable. Whether the dates of a user’s on-topic post are
uniformly spaced across the study period. Calculated by conducting a
chi-squared test comparing the distribution of post dates to a uniform
distribution and testing whether the resulting p-value is less than 0.10.

Subcommunity 1-2 Binary variable. Whether the user is in subcommunity 1-2 (the largest
anti-vaccine subcommunity). Only used to test the first hypothesis
(influence within anti-vaccine community alone).

Subcommunity 1-1 Binary variable. Whether the user is in subcommunity 1-1 (the
second-largest anti-vaccine subcommunity). Only used to test the first
hypothesis (influence within anti-vaccine community alone).

Subcommunity 2-1 Binary variable. Whether the user is in subcommunity 2-1 (the largest
pro-vaccine subcommunity). Only used to test the second hypothesis
(influence within pro-vaccine community alone).

Subcommunity 2-2 Binary variable. Whether the user is in subcommunity 2-2 (the
pro-vaccine subcommunity focused on vaccination in Canada). Only
used to test the second hypothesis (influence within pro-vaccine
community alone).

Table 2: Description of covariates used for matching.
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Outcome variable Description
Median likes (log) Continuous variable. Natural log of median number of likes received on all

original (non-retweet) on-topic posts.
h-index likes (log) Continuous variable. Natural log of h-index for likes received across all

original (non-retweet) on-topic posts.
Median retweets (log) Continuous variable. Natural log of median number of retweets received on

all original (non-retweet) on-topic posts.
h-index retweets (log) Continuous variable. Natural log of h-index for retweets received across all

original (non-retweet) on-topic posts.
Degree centrality Continuous variable. Degree centrality within coengagement network.
Eigenvector centrality Continuous variable. Eigenvector centrality within coengagement network.
Betweeness centrality Continuous variable. Betweenness centrality within coengagement network.

Table 3: Description of influence metrics that were outcomes for matching.
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7.4 Tweet and user characteristics

This section contains additional information about expertise signals provided by
users (Supplemental Figure 7), the vaccine stances of popular tweets in the the
anti- and pro-vaccine communities (Supplemental Figure 8), and link-sharing
behavior for users depending on perceived expertise and community (Supple-
mental Figure 9).
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@JekyllMD

philanthropist Mr. Edward Hyde

@hyde_and_seek

philanthropist

Dr. Henry Jekyll

@JekyllMD

physician, potion maker

Mr. Edward Hyde

@hyde_and_seek

physician, potion maker
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@JekyllMD

PhD in 19th century literature

No signal in nameSignal in name

No signal in description

Signal in description

A

B

Figure 7: Signals of expertise may appear in different parts of the
profile. Panel A (top) gives examples of different ways that expertise signals
may be presented. Starting in the bottom right and moving counterclockwise:
signal in description only (red), signal in name and description (purple), signal
in name but description clarifies user is not an expert (green), or signal in name
only no information about perceived expertise in description (blue). The gray
profile has no signals of expertise and is therefore not a perceived expert. Panel
B (bottom) is the proportion of perceived experts that provide expertise signals
in each way across different group (x-axis): the full coengagement network, the
pro and anti-vaccine communities combined, the pro-vaccine community alone,
and the anti-vaccine community alone.
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Figure 8: User stance is largely consistent within the two largest com-
munities. Plots display tweet stance across the ten perceived non-experts (left
column) and ten perceived experts with the greatest degree centrality (right
column) in the anti- and pro-vaccine communities (top and bottom row respec-
tively). Users are ranked and arranged by degree centrality (x-axis). Three
coders assessed the stance of a sample of highly retweeted tweets from each
user, and results from all coders are displayed side-by-side for each user. Bars
are shaded by the number of tweets assessed as positive (green), neutral (gray),
or negative (pink).
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Figure 9: Link-sharing activity across communities and perceived ex-
pertise. Each panel compares a different metric of link-sharing by perceived
experts and perceived non-experts in the anti- (pink) and pro- (green) vaccine
communities. The metrics are: (A) average number of posts per user (B) pro-
portion of all tweets with links (C) proportion of links that were checked (did not
link back to Twitter or timed out during link expansion) (D) the total number
of checked links in a given category. Error bars give 95% binomial proportion
confidence intervals for proportions in panel B and C.

7.5 Subcommunity descriptions and visualization

Infomap is a hierarchical community detection algorithm, allowing the detection
of subcommunities [Holmgren et al., 2022]. In this section, we visualize sub-
communities detected using Infomap (Supplemental Figure 10) and note that
these subcommunities closely resemble communities detected using the Louvain
method, suggesting that our results are robust to choice of community detection
algorithm. We also provide a table of subcommunity properties (Supplemental
Table 4).

We reviewed a sample of popular tweets from each subcommunity to label
subcommunities based on topic. Within the pro-vaccine community, the four
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most popular subcommunities included: the largest (main) subcommunity that
generally discussed vaccine safety and efficacy and focused on vaccination in the
United States, a subcommunity of predominantly non-individual accounts that
posted news stories with headlines, a subcommunity focused on vaccination in
Canada, and a subcommunity focused on vaccination in Australia. Tweets in the
latter two subcommunities often criticized the pace of vaccination as too slow,
blaming specific politicians. The four most popular anti-vaccine subcommunities
included two large (main) subcommunities that we labeled as main anti (A)
and main anti (B). The distinction between the two subcommunities may be
related to main anti (A)’s greater connection to followback clusters, or densely
connected groups of accounts that frequently retweet each other and a small set
of accounts outside of their network [Beers et al., 2023], although we did not
test this hypothesis directly. Again, these subcommunities generally discussed
vaccine safety and efficacy, with some emphasis on vaccination in the United
States. The two next largest subcommunities in the anti-vaccine community
consisted largely of non-English accounts with profiles in French or Italian. The
third largest community that was excluded from the main analysis tweeted
about vaccination in India ([Hagen et al., 2022, Boucher et al., 2021]), which
broke into two subcommunities: India (A) and India (B). It was not immediately
clear whether there were any differences in the content posted by users in either
subcommunity.

The communities detected using the Louvain method closely resembled these
subcommunities, although the media subcommunity in the pro-vaccine commu-
nity was combined with the main pro-vaccine subcommunity. Across subcom-
munities, all users were fully contained within their equivalent Louvain subcom-
munity except in the case of anti (A), as some users in the boundary between
anti (A) and anti (B) were classified into the latter subcommunity. There were
2004 users in the largest Louvain communities that were not in any of the
largest Infomap subcommunities, meaning that the Louvain communities were
generally more expansive.
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India (A)
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French

Italian

India (B)

Media

Figure 10: The main subcommunities of the coengagement network
of users tweeting about COVID-19 vaccines. Users are represented as
circles and scaled by degree centrality. Edges connect users that were retweeted
at least twice by at least ten of the same users. All edges are gray. Nodes in the
ten largest subcommunities detected using the Infomap algorithm are colored in
different shades of pink and red if they are in the anti-vaccine community (top
to bottom: Italian, French, Main Anti (B), Main Anti (A)), green and blue if
they are in the pro-vaccine community (top to bottom: Australia, Media, Main
Pro, and Canada), and shades of orange if they are in the community focused
on vaccination in India (top to bottom: India (A), India (B)). Nodes outside of
the ten largest subcommunities are gray.
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India (B)

Figure 11: The main communities of the coengagement network of
users tweeting about COVID-19 vaccines detected using the Louvain
algorithm roughly correspond to subcommunities detected using the
Infomap algorithm (compare to Supplemental Figure 10). Users are
represented as circles and scaled by degree centrality. Edges connect users that
were retweeted at least twice by at least ten of the same users. All edges are gray.
Nodes in the nine largest communities detected using the Louvain algorithm are
colored in different shades of pink if they are in the anti-vaccine community (top
to bottom: Italian, French, Main Anti (B), Main Anti (A)), green if they are in
the pro-vaccine community (top to bottom: Australia, Main Pro, and Canada),
and shades of orange if they are in the community focused on vaccination in
India (top to bottom: India (A), India (B)). Nodes outside of the nine largest
subcommunities are gray.
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Subcom-
munity
Code

Name Louvain
Equiva-
lent

Community Total
users

Included
users

Perceived
Experts

Count in
Louvain

1 1 Anti (A) Anti (A) Anti 744 (0.28) 684 (0.92) 76 (0.11) 662 (0.89)
2 1 Main Pro Main Pro Pro 737 (0.21) 579 (0.79) 84 (0.15) 737 (1)
1 2 Anti (B) Anti (B) Anti 538 (0.2) 491 (0.91) 40 (0.08) 538 (1)
1 3 French French Anti 425 (0.16) 90 (0.21) 7 (0.08) 425 (1)
2 2 Canada Canada Pro 385 (0.11) 283 (0.74) 56 (0.2) 385 (1)
2 4 Australia Australia Pro 316 (0.09) 289 (0.91) 42 (0.15) 316 (1)
2 3 Media Main Pro Pro 258 (0.07) 49 (0.19) 8 (0.16) 258 (1)
3 2 India (A) India (A) India 239 (0.35) 194 (0.81) 17 (0.09) 239 (1)
3 1 India (B) India (B) India 186 (0.27) 162 (0.87) 17 (0.1) 186 (1)
1 5 Italian Italian Anti 183 (0.07) 50 (0.27) 2 (0.04) 183 (1)

Table 4: Properties of subcommunities detected using the Infomap
community detection algorithm (displayed in Supplemental Fig-
ure 10). From left to right, the columns are as follows: the code for the
subcommunity (where the first digit corresponds to the community code and
the second digit corresponds to the subcommunity code); a subcommunity name
determined by reviewing a sample of popular tweets; the name of the equivalent
subcommunity detected using the Louvain community detection algorithm; the
name of the community to which the subcommunity belongs; the total number
of accounts in the subcommunity and, in parentheses, the proportion of total
users in the community that are part of a given subcommunity; the number
of users meeting the criteria for inclusion (i.e., English profile, individual, un-
changed perceived expertise) and, in parentheses, the proportion of users in
the subcommunity meeting the criteria for inclusion in analyses; the number of
perceived experts in the subcommunity and, in parentheses, the proportion of
individual users in the subcommunity who are perceived experts; and the count
of users in a given Infomap subcommunity who are also in the corresponding
Louvain community and, in parentheses, the proportion of users in the Infomap
subcommunity who are in the corresponding Louvain community.
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7.6 Network visualization with nodes scaled by different
metrics

This section contains visualizations of the coengagement network where nodes
are scaled and labeled according to each network metric used in the analyses:
community bridging (Supplemental Figure 12), degree centrality (Supplemental
Figure 13), betweenness centrality (Supplemental Figure 14), and eigenvector
centrality (Supplemental Figure 15). These figures allow comparisons of how
different nodes are ranked across each metric.
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Figure 12: Node size corresponds to community bridging score. As in Figure 1,
users are represented as circles. Edges connect users that were retweeted at
least twice by at least ten of the same users. All edges are gray. Nodes in the
two largest communities detected using the Infomap algorithm are colored in
pink (anti-vaccine) and green (pro-vaccine). Shades indicate account type: non-
individual and non-English accounts excluded from analyses (light); individual
perceived non-expert (medium); and perceived experts (dark). Nodes outside
of the two largest communities are gray. Users that rank in the top 500, top
50, and top ten users by community bridging across the whole coengagement
network are labeled with one, two, and three stars respectively.
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Figure 13: Node size corresponds to degree centrality. As in Figure 1, users are
represented as circles. Edges connect users that were retweeted at least twice
by at least ten of the same users. All edges are gray. Nodes in the two largest
communities detected using the Infomap algorithm are colored in pink (anti-
vaccine) and green (pro-vaccine). Shades indicate account type: non-individual
and non-English accounts excluded from analyses (light); individual perceived
non-expert (medium); and perceived experts (dark). Nodes outside of the two
largest communities are gray. Users that rank in the top 500 and top 50 users by
degree centrality within the anti-vaccine or pro-vaccine community are labeled
with one and and two stars.
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Figure 14: Node size corresponds to betweenness centrality. As in Figure 1,
users are represented as circles. Edges connect users that were retweeted at
least twice by at least ten of the same users. All edges are gray. Nodes in the
two largest communities detected using the Infomap algorithm are colored in
pink (anti-vaccine) and green (pro-vaccine). Shades indicate account type: non-
individual and non-English accounts excluded from analyses (light); individual
perceived non-expert (medium); and perceived experts (dark). Nodes outside
of the two largest communities are gray. Users that rank in the top 500 and
top 50 users by betweenness centrality within the anti-vaccine or pro-vaccine
community are labeled with one and and two stars.
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Figure 15: Node size corresponds to eigenvector centrality. As in Figure 1, users
are represented as circles. Edges connect users that were retweeted at least twice
by at least ten of the same users. All edges are gray. Nodes in the two largest
communities detected using the Infomap algorithm are colored in pink (anti-
vaccine) and green (pro-vaccine). Shades indicate account type: non-individual
and non-English accounts excluded from analyses (light); individual perceived
non-expert (medium); and perceived experts (dark). Nodes outside of the two
largest communities are gray. Users that rank in the top 500 and top 50 users
by eigenvector centrality within the anti-vaccine or pro-vaccine community are
labeled with one and and two stars.

7.7 Main matching analyses

This section provides sample sizes (Supplemental Table 5), covariate balance
before and after matching (Supplemental Figure 16 for H1, Supplemental Fig-
ure 17 for H2, Supplemental Figure 18 for H3), and statistics related to estimated
average treatment effect on the treated (ATT) (Supplemental Table 6 for H1,
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Supplemental Table 7 for H2, Supplemental Table 8 and Supplemental Table 9
for H3). We also visualize the estimated ATT within the anti- and pro-vaccine
communities (Supplemental Figure 19) and the difference in the estimated ATT
between the anti- and pro-vaccine communities (Supplemental Figure 20).

Note that Supplemental Table 8 gives that computed influence boost for
perceived experts in the anti- and pro-vaccine communities and Supplemental
Table 9 gives the difference in influence boosts for perceived experts between
the anti- and pro-vaccine communities. ATTs given in Supplemental Table 8
and Supplemental Figure 5 are comparable to those in Supplemental Figure 16,
Figure 17, and Supplemental Figure 19 except subcommunity was dropped as
a matching covariate to enable comparison between communities.

Perceived non-experts Perceived experts
Unmatched (Anti-vaccine) 1630 179

Matched (Anti-vaccine) 537 179
Unmatched (Pro-vaccine) 1784 377

Matched (Pro-vaccine) 1131 377
Unmatched (All users) 3414 556

Matched (All users) 1668 556

Table 5: Sample size of perceived non-experts and perceived experts before and
after propensity score matching in the anti-vaccine community (H1), pro-vaccine
community (H2), or both (H3).
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Figure 16: Love plot demonstrating the balance across matching co-
variates for individuals in the anti-vaccine community before (orange)
and after (blue) propensity score matching was performed to test H1.
Each row corresponds to a different matching covariate (described in Supple-
ment Table 2. The x-axis is absolute standardized mean difference, where values
closer to zero correspond to better balance. The horizontal line indicates 0.1,
the threshold below which balance is generally considered good.
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Figure 17: Love plot demonstrating the balance across matching co-
variates for individuals in the pro-vaccine community before (orange)
and after (blue) propensity score matching was performed to test H2.
Each row corresponds to a different matching covariate (described in Supple-
ment Table 2. The x-axis is absolute standardized mean difference, where values
closer to zero correspond to better balance. The horizontal line indicates 0.1,
the threshold below which balance is generally considered good.
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Figure 18: Love plot demonstrating the balance across matching covari-
ates for individuals in the pro- and anti-vaccine communities before
(orange) and after (blue) propensity score matching was performed
to test H3. Each row corresponds to a different matching covariate (described
in Supplement Table 2. The x-axis is absolute standardized mean difference,
where values closer to zero correspond to better balance. The horizontal line
indicates 0.1, the threshold below which balance is generally considered good.

Outcome Estimate p-value Std. Error
Median log(Likes) 0.29 (0.09, 0.49) 0.004 0.10
h-index log(Likes) 3.43 (1.11, 5.76) 0.004 1.19

Median log(Retweets) 0.19 (0.03, 0.36) 0.021 0.08
h-index log(Retweets) 1.90 (0.36, 3.44) 0.016 0.78

Degree Centrality 4.96 (-6.96, 16.87) 0.415 6.08
Eigenvector Centrality 3.23e-05 (-4.91e-05, 1.14e-04) 0.437 0.00
Betweenness Centrality 2681.01 (-8098.77, 13460.80) 0.626 5499.99

Table 6: Average treatment effect on the treated within the anti-
vaccine community (H1). Each row corresponds to results of the match-
ing analysis for a different outcome variable, named in the first column and
described in Supplemental Table 2. The estimate column gives the average
treatment effect on the treated with the corresponding 95% confidence interval
in parentheses. Positive values indicate greater influence for perceived experts
compared to perceived non-experts. The p-value and standard error for each
estimate are also provided.
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Outcome Estimate p-value Std. Error
Median log(Likes) 0.36 (0.22, 0.49) 0.000 0.07
h-index log(Likes) 4.33 (2.76, 5.89) 0.000 0.80

Median log(Retweets) 0.13 (0.03, 0.24) 0.012 0.05
h-index log(Retweets) 2.20 (1.27, 3.14) 0.000 0.48

Degree Centrality 4.80 (-0.13, 9.74) 0.056 2.52
Eigenvector Centrality 4.55e-05 (-2.03e-06, 9.30e-05) 0.061 0.00
Betweenness Centrality 12845.45 (4429.92, 21260.98) 0.003 4293.72

Table 7: Average treatment effect on the treated within the pros-
vaccine community (H2). Each row corresponds to results of the match-
ing analysis for a different outcome variable, named in the first column and
described in Supplemental Table 2. The estimate column gives the average
treatment effect on the treated with the corresponding 95% confidence interval
in parentheses. Positive values indicate greater influence for perceived experts
compared to perceived non-experts. The p-value and standard error for each
estimate are also provided.

Figure 19: In the anti-vaccine and pro-vaccine communities, perceived
experts receive greater engagements compared to other users. For
each influence metric (y-axis, Supplemental Table 3, we plot the standardized
average treatment effect on the treated (ATT) as a point and corresponding
95% confidence interval. Values are shown for the matching analyses comparing
perceived experts and perceived non-experts within the anti-vaccine (pink, left)
and pro-vaccine (green, right) communities (corresponding to Supplemental Ta-
ble 6 and Supplemental Table 7 respectively) with subcommunity matching.
Positive values (to the right of the vertical line) indicate an influence boost for
perceived experts. Instances where the effects were significantly greater than
zero (p < 0.05) are indicated with an additional circle around the point esti-
mate.
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Outcome Community Estimate p-value Std. Error
Median log(Likes) Anti-vaccine 0.35 (0.16, 0.55) 0.000 0.10
h-index log(Likes) Anti-vaccine 3.90 (1.59, 6.21) 0.001 1.18
Median log(Retweets) Anti-vaccine 0.25 (0.09, 0.40) 0.002 0.08
h-index log(Retweets) Anti-vaccine 2.30 (0.88, 3.72) 0.001 0.73
Degree Centrality Anti-vaccine 7.72 (-1.55, 16.98) 0.102 4.73
Eigenvector Centrality Anti-vaccine 4.32e-05 (-3.37e-05, 1.20e-04) 0.271 0.00
Betweenness Centrality Anti-vaccine 2956.88 (-9417.67, 15331.42) 0.640 6313.66
Median log(Likes) Pro-vaccine 0.38 (0.25, 0.52) 0.000 0.07
h-index log(Likes) Pro-vaccine 4.27 (2.67, 5.87) 0.000 0.82
Median log(Retweets) Pro-vaccine 0.15 (0.04, 0.25) 0.006 0.05
h-index log(Retweets) Pro-vaccine 2.20 (1.21, 3.19) 0.000 0.50
Degree Centrality Pro-vaccine 4.84 (-1.59, 11.27) 0.140 3.28
Eigenvector Centrality Pro-vaccine 4.46e-05 (-8.73e-06, 9.80e-05) 0.101 0.00
Betweenness Centrality Pro-vaccine 12874.05 (4283.48, 21464.61) 0.003 4383.02

Table 8: Average treatment effect on the treated within the anti- and
pro-vaccine communities (H3). Each row corresponds to results of the
matching analysis for a different outcome variable (named in the first column
and described in Supplemental Table 2) and community (named in the sec-
ond column). The estimate column gives the average treatment effect on the
treated with the corresponding 95% confidence interval in parentheses. Positive
values indicate greater influence for perceived experts compared to perceived
non-experts. The p-value and standard error for each estimate are also pro-
vided.
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Outcome Estimate p-value Std. Error
Median log(Likes) -0.03 (-0.26, 0.20) 0.804 0.12
h-index log(Likes) -0.37 (-3.67, 2.93) 0.826 1.68

Median log(Retweets) 0.10 (-0.09, 0.29) 0.319 0.10
h-index log(Retweets) 0.10 (-1.95, 2.15) 0.922 1.05

Degree Centrality 2.88 (-12.19, 17.95) 0.708 7.69
Eigenvector Centrality -1.47e-06 (-1.12e-04, 1.09e-04) 0.979 0.00
Betweenness Centrality -9917.17 (-28717.04, 8882.70) 0.301 9591.95

Table 9: Difference in average treatment effect on the treated between
the pro-vaccine and pro-vaccine community (H3). Each row corresponds
to results of the matching analysis for a different outcome variable, named in
the first column and described in Supplemental Table 2. The estimate column
gives the difference between the average treatment effect on the treated for the
anti-vaccine community versus the pro-vaccine community with the correspond-
ing 95% confidence interval in parentheses. Positive values indicate greater a
influence boost for perceived experts in the anti-vaccine community compared
to the pro-vaccine community. The p-value and standard error for each estimate
are also provided.
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Figure 20: There is no significant difference in the influence boost for
perceived experts between the anti- and pro-vaccine communities.
For each influence metric (y-axis, Supplemental Table 3, we plot the difference
in the standardized average treatment effect on the treated (ATT) between the
pro- and anti-vaccine communities as a point and corresponding 95% confidence
interval (Supplemental Table 9). Positive values (to the right of the vertical
line) indicate a greater influence boost for perceived experts in the anti-vaccine
commmunity compared to the pro-vaccine community. None of the differences
were significant at the p < 0.05 level.

7.8 Distribution of centrality values

This section further investigates why, despite being overrepresented amongst
users with the greatest centrality Figure 3, perceived experts do not, on av-
erage, have greater centrality than the matched set of perceived non-experts
Figure 5. Matching generally reduces differences the frequency distribution for
perceived experts versus perceived non-experts across centrality metrics, sug-
gesting that matching covariates may contribute to the greater frequency of
perceived experts with high centrality. Balancing therefore may partially re-
duce the difference in mean centrality between perceived experts and perceived
non-experts. However, perceived experts generally remain overrepresented in
the right tail of the distribution, even while this effect does not lead to a signif-
icant increase in the mean centrality of perceived experts.
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Figure 21: Matching reduces the proportion of perceived non-experts
with low centrality. Each plot shows the frequency distribution of users for a
given logged centrality metric. Values are log-transformed because distributions
are highly skewed. Lines are colored by the subset of users: perceived experts
(red), perceived non-experts in the full community prior to matching (green),
and perceived non-experts in the community subset for matching (blue). Values
to the right of the vertical lines indicate users in the top 500 (gray) or 50
(black) users ranked by the given centrality metric. Each row corresponds to a
different centrality metric: betweeenness (top), degree (middle), and eigenvector
(bottom). Each columns corresponds to a different community: anti-vaccine
(left) or pro-vaccine (right).
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7.9 Sensitivity to matching specifications

This section shows that propensity score matching results are generally robust to
k, the number of nearest neighbors to which each perceived expert is matched
(Supplemental Figure 22), and the exclusion of any one matching covariates
(Supplemental Figure 23 for balance, Supplemental Figure 24 for ATT). We
do note that the significant ATT for betweenness centrality in the pro-vaccine
community does not hold if a variable other than percent with links is excluded,
suggesting that this result in particular may be sensitive to matching on this
covariate. Poor balance is generally achieved for the percent with links covariate.
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Figure 22: Matching balance and results are robust to k, the number of
nearest neighbors to which each perceived expert is matched. Caption
continued on following page. 56
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Figure 22: (continued) Each row corresponds to a different value of k: 1 (top),
2 (middle), or 3 (bottom). The left column contains Love plots demonstrating
the balance across matching covariates for individuals in the pro- and anti-
vaccine communities before (orange) and after (blue) propensity score matching
was performed. Within a plot, each row corresponds to a different matching
covariate (described in Supplement Table 2. The x-axis is absolute standardized
mean difference, where values closer to zero correspond to better balance. The
horizontal line indicates 0.1, the threshold below which balance is generally
considered good. The right column shows the standardized average treatment
effect on the treated (point) and corresponding 95 % confidence interval for each
influence metric (y-axis, Supplemental Table 3). Values are shown for the third
matching analysis directly comparing the anti-vaccine (pink) and pro-vaccine
(green) communities. Positive values (to the right of the vertical line) indicate
an influence boost for perceived experts. Instances where the average treatment
effect on the treated was significantly greater than zero (p < 0.05) are indicated
with an additional circle around the point estimate.
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Figure 23: Matching balance is robust to matching covariates. Matching
covariates were dropped one at a time to detect whether inclusion of a single
covariate affected balance across other matching covariates. Caption continued
on following page.
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Figure 23: (continued) Each plot corresponds to a different dropped covariate
indicated in the panel title (described in Supplement Table 2). Note that the
variable posting time encompasses the three binary variables: morning poster,
evening poster, and night poster. Each Love plots demonstrates the balance
across matching covariates for individuals in the pro- and anti-vaccine communi-
ties before (orange) and after (blue) propensity score matching was performed.
Each row within a figure corresponds to a different matching covariate. The
x-axis is absolute standardized mean difference, where values closer to zero cor-
respond to better balance. The horizontal line indicates 0.1, the threshold below
which balance is generally considered good.

59

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


Figure 24: Average treatment effect on the treated (ATT) is robust
to matching covariates. Matching covariates were dropped one at a time to
detect whether inclusion of a single covariate affected ATT. Caption continued
on following page.
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Figure 24: (continued) Each plot corresponds to a different influence metric
indicated in the panel title (described in Supplemental Table 3). Plots show the
standardized average treatment effect on the treated (point) and corresponding
95 % confidence interval depending on which matching covariate was dropped
(Supplement Table 2). Note that the variable posting time encompasses the
three binary variables: morning poster, evening poster, and night poster. Values
are shown for the third matching analysis directly comparing the anti-vaccine
(pink) and pro-vaccine (green) communities. Positive values (to the right of the
vertical line) indicate an influence boost for perceived experts compared to other
individual users. Instances where the average treatment effect on the treated
was significantly greater than zero (p < 0.05) are indicated with an additional
circle around the point estimate.
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doctors’ consensus persistently increases COVID-19 vaccinations. Na-
ture, 606(7914):542–549, June 2022. ISSN 0028-0836, 1476-4687. doi:
10.1038/s41586-022-04805-y. URL https://www.nature.com/articles/

s41586-022-04805-y.

M. Bastian, S. Heymann, and M. Jacomy. Gephi: An Open Source Software
for Exploring and Manipulating Networks. Proceedings of the International
AAAI Conference on Web and Social Media, 3(1):361–362, Mar. 2009. ISSN
2334-0770, 2162-3449. doi: 10.1609/icwsm.v3i1.13937. URL https://ojs.

aaai.org/index.php/ICWSM/article/view/13937.

62

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

http://arxiv.org/abs/2303.16302
https://www.frontiersin.org/article/10.3389/fnhum.2016.00636
https://www.frontiersin.org/article/10.3389/fnhum.2016.00636
https://ieeexplore.ieee.org/document/10020853/
https://ieeexplore.ieee.org/document/10020853/
https://www.ssrn.com/abstract=3698102
https://CRAN.R-project.org/package=marginaleffects
https://CRAN.R-project.org/package=marginaleffects
https://doi.org/10.1145/1935826.1935845
https://doi.org/10.1145/1935826.1935845
https://www.nature.com/articles/s41586-022-04805-y
https://www.nature.com/articles/s41586-022-04805-y
https://ojs.aaai.org/index.php/ICWSM/article/view/13937
https://ojs.aaai.org/index.php/ICWSM/article/view/13937
https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


A. Beers, S. Nguyên, K. Starbird, J. D. West, and E. S. Spiro. The architects
of perceived consensus. In review, Dec. 2022.

A. Beers, J. S. Schafer, I. Kennedy, M. Wack, E. S. Spiro, and K. Starbird.
Followback Clusters, Satellite Audiences, and Bridge Nodes: Coengagement
Networks for the 2020 US Election. Proceedings of the International AAAI
Conference on Web and Social Media, June 2023.

A. B. Berenson, M. Chang, J. M. Hirth, and M. Kanukurthy. Intent to get vac-
cinated against COVID-19 among reproductive-aged women in Texas. Hu-
man Vaccines & Immunotherapeutics, 17(9):2914–2918, Sept. 2021. ISSN
2164-5515, 2164-554X. doi: 10.1080/21645515.2021.1918994. URL https:

//www.tandfonline.com/doi/full/10.1080/21645515.2021.1918994.

R. E. W. Berl, A. N. Samarasinghe, S. G. Roberts, F. M. Jordan, and
M. C. Gavin. Prestige and content biases together shape the cultural
transmission of narratives. Evolutionary Human Sciences, 3, 2021. ISSN
2513-843X. doi: 10.1017/ehs.2021.37. URL https://www.cambridge.

org/core/journals/evolutionary-human-sciences/article/

prestige-and-content-biases-together-shape-the-cultural-transmission-of-narratives/

4BB933C47461D60F285514311028DA24. Publisher: Cambridge University
Press.

E. Bonnevie, A. Gallegos-Jeffrey, J. Goldbarg, B. Byrd, and J. Smyser. Quan-
tifying the rise of vaccine opposition on Twitter during the COVID-19 pan-
demic. Journal of Communication in Healthcare, 14(1):12–19, Jan. 2021.
ISSN 1753-8068. doi: 10.1080/17538068.2020.1858222. URL https://doi.

org/10.1080/17538068.2020.1858222. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/17538068.2020.1858222.

J.-C. Boucher, K. Cornelson, J. L. Benham, M. M. Fullerton, T. Tang,
C. Constantinescu, M. Mourali, R. J. Oxoby, D. A. Marshall, H. Hem-
mati, A. Badami, J. Hu, and R. Lang. Analyzing Social Media to Ex-
plore the Attitudes and Behaviors Following the Announcement of Suc-
cessful COVID-19 Vaccine Trials: Infodemiology Study. JMIR Infodemiol-
ogy, 1(1):e28800, Aug. 2021. ISSN 2564-1891. doi: 10.2196/28800. URL
https://infodemiology.jmir.org/2021/1/e28800.

A. S. Bradshaw. #DoctorsSpeakUp: Exploration of Hashtag Hijacking by Anti-
Vaccine Advocates and the Influence of Scientific Counterpublics on Twitter.
Health Communication, pages 1–11, Apr. 2022. ISSN 1041-0236, 1532-7027.
doi: 10.1080/10410236.2022.2058159. URL https://www.tandfonline.com/

doi/full/10.1080/10410236.2022.2058159.

A. S. Bradshaw, D. Treise, S. S. Shelton, M. Cretul, A. Raisa, A. Bajalia, and
D. Peek. Propagandizing anti-vaccination: Analysis of Vaccines Revealed
documentary series. Vaccine, 38(8):2058–2069, Feb. 2020. ISSN 0264410X.
doi: 10.1016/j.vaccine.2019.12.027. URL https://linkinghub.elsevier.

com/retrieve/pii/S0264410X1931669X.

63

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

https://www.tandfonline.com/doi/full/10.1080/21645515.2021.1918994
https://www.tandfonline.com/doi/full/10.1080/21645515.2021.1918994
https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/prestige-and-content-biases-together-shape-the-cultural-transmission-of-narratives/4BB933C47461D60F285514311028DA24
https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/prestige-and-content-biases-together-shape-the-cultural-transmission-of-narratives/4BB933C47461D60F285514311028DA24
https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/prestige-and-content-biases-together-shape-the-cultural-transmission-of-narratives/4BB933C47461D60F285514311028DA24
https://www.cambridge.org/core/journals/evolutionary-human-sciences/article/prestige-and-content-biases-together-shape-the-cultural-transmission-of-narratives/4BB933C47461D60F285514311028DA24
https://doi.org/10.1080/17538068.2020.1858222
https://doi.org/10.1080/17538068.2020.1858222
https://infodemiology.jmir.org/2021/1/e28800
https://www.tandfonline.com/doi/full/10.1080/10410236.2022.2058159
https://www.tandfonline.com/doi/full/10.1080/10410236.2022.2058159
https://linkinghub.elsevier.com/retrieve/pii/S0264410X1931669X
https://linkinghub.elsevier.com/retrieve/pii/S0264410X1931669X
https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


A. S. Bradshaw, S. S. Shelton, A. Fitzsimmons, and D. Treise. ‘From cover-
up to catastrophe:’ how the anti-vaccine propaganda documentary ‘ Vaxxed’
impacted student perceptions and intentions about MMR vaccination. Jour-
nal of Communication in Healthcare, pages 1–13, Sept. 2022. ISSN 1753-
8068, 1753-8076. doi: 10.1080/17538068.2022.2117527. URL https://www.

tandfonline.com/doi/full/10.1080/17538068.2022.2117527.

C. O. Brand, S. Heap, T. J. H. Morgan, and A. Mesoudi. The emergence and
adaptive use of prestige in an online social learning task. Scientific Reports,
10(1):12095, July 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-68982-4.
URL https://www.nature.com/articles/s41598-020-68982-4. Number:
1 Publisher: Nature Publishing Group.

T. Callaghan, D. Washburn, K. Goidel, T. Nuzhath, A. Spiegelman, J. Scobee,
A. Moghtaderi, and M. Motta. Imperfect messengers? An analysis of vaccine
confidence among primary care physicians. Vaccine, 40(18):2588–2603, Apr.
2022. ISSN 0264-410X. doi: 10.1016/j.vaccine.2022.03.025. URL https:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC8931689/.

O. Candogan and K. Drakopoulos. Optimal Signaling of Content Accuracy:
Engagement vs. Misinformation. SSRN Scholarly Paper ID 3051275, Social
Science Research Network, Rochester, NY, Oct. 2017. URL https://papers.

ssrn.com/abstract=3051275.

R. M. Carpiano, T. Callaghan, R. DiResta, N. T. Brewer, C. Clinton, A. P.
Galvani, R. Lakshmanan, W. E. Parmet, S. B. Omer, A. M. Buttenheim,
R. M. Benjamin, A. Caplan, J. A. Elharake, L. C. Flowers, Y. A. Maldonado,
M. M. Mello, D. J. Opel, D. A. Salmon, J. L. Schwartz, J. M. Sharfstein, and
P. J. Hotez. Confronting the evolution and expansion of anti-vaccine activism
in the USA in the COVID-19 era. The Lancet, page S0140673623001368, Mar.
2023. ISSN 01406736. doi: 10.1016/S0140-6736(23)00136-8. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0140673623001368.

F. Cascini, A. Pantovic, Y. A. Al-Ajlouni, G. Failla, V. Puleo, A. Melnyk,
A. Lontano, and W. Ricciardi. Social media and attitudes towards a COVID-
19 vaccination: A systematic review of the literature. eClinicalMedicine, 48:
101454, June 2022. ISSN 25895370. doi: 10.1016/j.eclinm.2022.101454. URL
https://linkinghub.elsevier.com/retrieve/pii/S2589537022001845.

L. Ceccarelli. Manufactured Scientific Controversy: Science, Rhetoric, and Pub-
lic Debate. Rhetoric and Public Affairs, 14(2):195–228, 2011. ISSN 1094-
8392. URL https://www.jstor.org/stable/41940538. Publisher: Michi-
gan State University Press.

Center for Countering Digital Hate. The disinformation dozen: Why plat-
forms must act on twelve leading online anti-vaxxers. Technical report,
Mar. 2021. URL https://counterhate.com/wp-content/uploads/2022/

05/210324-The-Disinformation-Dozen.pdf.

64

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

https://www.tandfonline.com/doi/full/10.1080/17538068.2022.2117527
https://www.tandfonline.com/doi/full/10.1080/17538068.2022.2117527
https://www.nature.com/articles/s41598-020-68982-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931689/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931689/
https://papers.ssrn.com/abstract=3051275
https://papers.ssrn.com/abstract=3051275
https://linkinghub.elsevier.com/retrieve/pii/S0140673623001368
https://linkinghub.elsevier.com/retrieve/pii/S0140673623001368
https://linkinghub.elsevier.com/retrieve/pii/S2589537022001845
https://www.jstor.org/stable/41940538
https://counterhate.com/wp-content/uploads/2022/05/210324-The-Disinformation-Dozen.pdf
https://counterhate.com/wp-content/uploads/2022/05/210324-The-Disinformation-Dozen.pdf
https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi. Measuring user influ-
ence in twitter: The million follower fallacy. Proceedings of the International
AAAI Conference on Web and Social Media, 4(1):8, May 2010.

G. Csardi and T. Nepusz. The igraph software package for complex network
research. InterJournal, Complex Systems:1695, 2006. URL https://igraph.

org.

M. R. DeVerna, R. Aiyappa, D. Pacheco, J. Bryden, and F. Menczer. Identifica-
tion and characterization of misinformation superspreaders on social media,
July 2022. URL http://arxiv.org/abs/2207.09524. arXiv:2207.09524 [cs].

A. Efstratiou and T. Caulfield. Misrepresenting Scientific Consensus on COVID-
19: The Amplification of Dissenting Scientists on Twitter. arXiv, Nov. 2021.
URL http://arxiv.org/abs/2111.10594. arXiv: 2111.10594.

S. Epstein. Impure science: AIDS, activism, and the politics of knowledge.
Number 7 in Medicine and society. University of California press, Berkeley,
1996. ISBN 978-0-520-21445-3.

K. Faasse, C. J. Chatman, and L. R. Martin. A comparison of language use
in pro- and anti-vaccination comments in response to a high profile Facebook
post. Vaccine, 34(47):5808–5814, Nov. 2016. ISSN 1873-2518. doi: 10.1016/
j.vaccine.2016.09.029.

Federation of State Medical Boards Ethics and Professionalism
Committee. Professional Expectations Regarding Medical Mis-
information and Disinformation. Technical report, Apr. 2022.
URL https://www.fsmb.org/siteassets/advocacy/policies/

ethics-committee-report-misinformation-april-2022-final.pdf.

G. L. Freed, S. J. Clark, A. T. Butchart, D. C. Singer, and M. M. Davis.
Sources and perceived credibility of vaccine-safety information for parents.
Pediatrics, 127 Suppl 1:S107–112, May 2011. ISSN 1098-4275. doi: 10.1542/
peds.2010-1722P.

R. J. Gallagher, L. Doroshenko, S. Shugars, D. Lazer, and B. Foucault Welles.
Sustained Online Amplification of COVID-19 Elites in the United States.
Social Media + Society, 7(2):205630512110249, Apr. 2021. ISSN 2056-
3051, 2056-3051. doi: 10.1177/20563051211024957. URL http://journals.

sagepub.com/doi/10.1177/20563051211024957.

A. Gesser-Edelsburg, A. Diamant, R. Hijazi, and G. S. Mesch. Correcting
misinformation by health organizations during measles outbreaks: A con-
trolled experiment. PLOS ONE, 13(12):e0209505, Dec. 2018. ISSN 1932-6203.
doi: 10.1371/journal.pone.0209505. URL https://journals.plos.org/

plosone/article?id=10.1371/journal.pone.0209505. Publisher: Public
Library of Science.

65

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

https://igraph.org
https://igraph.org
http://arxiv.org/abs/2207.09524
http://arxiv.org/abs/2111.10594
https://www.fsmb.org/siteassets/advocacy/policies/ethics-committee-report-misinformation-april-2022-final.pdf
https://www.fsmb.org/siteassets/advocacy/policies/ethics-committee-report-misinformation-april-2022-final.pdf
http://journals.sagepub.com/doi/10.1177/20563051211024957
http://journals.sagepub.com/doi/10.1177/20563051211024957
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209505
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209505
https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


S. Gilbert and D. Paulin. Tweet to Learn: Expertise and Centrality in Con-
ference Twitter Networks. In 2015 48th Hawaii International Conference on
System Sciences, pages 1920–1929, HI, USA, Jan. 2015. IEEE. ISBN 978-1-
4799-7367-5. doi: 10.1109/HICSS.2015.231. URL http://ieeexplore.ieee.

org/document/7070042/.

B. Golding. Iffy Index of Unreliable Sources, Jan. 2023. URL https://iffy.

news/index/.

A. Goyal, F. Bonchi, and L. V. Lakshmanan. Discovering leaders from commu-
nity actions. In Proceeding of the 17th ACM conference on Information and
knowledge mining - CIKM ’08, page 499, Napa Valley, California, USA, 2008.
ACM Press. ISBN 978-1-59593-991-3. doi: 10.1145/1458082.1458149. URL
http://portal.acm.org/citation.cfm?doid=1458082.1458149.

J. Griffith, H. Marani, and H. Monkman. COVID-19 Vaccine Hesitancy in
Canada: Content Analysis of Tweets Using the Theoretical Domains Frame-
work. Journal of Medical Internet Research, 23(4):e26874, Apr. 2021. ISSN
1438-8871. doi: 10.2196/26874. URL https://www.jmir.org/2021/4/

e26874.

V. Grolmusz. A note on the PageRank of undirected graphs. Information Pro-
cessing Letters, 115(6-8):633–634, June 2015. ISSN 00200190. doi: 10.1016/j.
ipl.2015.02.015. URL https://linkinghub.elsevier.com/retrieve/pii/

S0020019015000381.

L. Hagen, T. Keller, S. Neely, N. DePaula, and C. Robert-Cooperman. Crisis
Communications in the Age of Social Media: A Network Analysis of Zika-
Related Tweets. Social Science Computer Review, 36(5):523–541, Oct. 2018.
ISSN 0894-4393, 1552-8286. doi: 10.1177/0894439317721985. URL http:

//journals.sagepub.com/doi/10.1177/0894439317721985.

L. Hagen, A. Fox, H. O’Leary, D. Dyson, K. Walker, C. A. Lengacher, and
R. Hernandez. The Role of Influential Actors in Fostering the Polarized
COVID-19 Vaccine Discourse on Twitter: Mixed Methods of Machine Learn-
ing and Inductive Coding. JMIR Infodemiology, 2(1):e34231, June 2022. ISSN
2564-1891. doi: 10.2196/34231. URL https://infodemiology.jmir.org/

2022/1/e34231.

R. Hasan, C. Cheyre, Y.-Y. Ahn, R. Hoyle, and A. Kapadia. The Impact of
Viral Posts on Visibility and Behavior of Professionals: A Longitudinal Study
of Scientists on Twitter. Proceedings of the International AAAI Conference
on Web and Social Media, 16:323–334, May 2022. ISSN 2334-0770. doi: 10.
1609/icwsm.v16i1.19295. URL https://ojs.aaai.org/index.php/ICWSM/

article/view/19295.

M. R. Haupt, J. Li, and T. K. Mackey. Identifying and characterizing
scientific authority-related misinformation discourse about hydroxychloro-
quine on twitter using unsupervised machine learning. Big Data & Soci-
ety, 8(1):20539517211013843, Jan. 2021. ISSN 2053-9517. doi: 10.1177/

66

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.12.23292568doi: medRxiv preprint 

http://ieeexplore.ieee.org/document/7070042/
http://ieeexplore.ieee.org/document/7070042/
https://iffy.news/index/
https://iffy.news/index/
http://portal.acm.org/citation.cfm?doid=1458082.1458149
https://www.jmir.org/2021/4/e26874
https://www.jmir.org/2021/4/e26874
https://linkinghub.elsevier.com/retrieve/pii/S0020019015000381
https://linkinghub.elsevier.com/retrieve/pii/S0020019015000381
http://journals.sagepub.com/doi/10.1177/0894439317721985
http://journals.sagepub.com/doi/10.1177/0894439317721985
https://infodemiology.jmir.org/2022/1/e34231
https://infodemiology.jmir.org/2022/1/e34231
https://ojs.aaai.org/index.php/ICWSM/article/view/19295
https://ojs.aaai.org/index.php/ICWSM/article/view/19295
https://doi.org/10.1101/2023.07.12.23292568
http://creativecommons.org/licenses/by-nc/4.0/


20539517211013843. URL https://doi.org/10.1177/20539517211013843.
Publisher: SAGE Publications Ltd.

R. G. Hernandez, L. Hagen, K. Walker, H. O’Leary, and C. Lengacher. The
COVID-19 vaccine social media infodemic : healthcare providers’ missed dose
in addressing misinformation and vaccine hesitancy. Human Vaccines & Im-
munotherapeutics, 17(9):2962–2964, Sept. 2021. ISSN 2164-5515, 2164-554X.
doi: 10.1080/21645515.2021.1912551. URL https://www.tandfonline.com/

doi/full/10.1080/21645515.2021.1912551.
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