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Abstract—We consider a new approach to extracting informa-
tion from dendrograms in the biological literature representing
phylogenetic trees. Existing algorithmic approaches to extract
these relationships rely on tracing tree contours and are very
sensitive to image quality issues, but manual approaches require
significant human effort and cannot be used at scale. We
introduce PhyloParser, a fully automated, end-to-end system for
automatically extracting species relationships from phylogenetic
tree diagrams using a multi-modal approach to digest diverse tree
styles. Our approach automatically identifies phylogenetic tree
figures in the scientific literature, extracts the key components
of tree structure, reconstructs the tree, and recovers the species
relationships. We use multiple methods to extract tree components
with high recall, then filter false positives by applying topological
heuristics about how these components fit together. We present
an evaluation on a real-world dataset to quantitatively and
qualitatively demonstrate the efficacy of our approach. Our
classifier achieves 89% recall and 99% precision, with a low
average error rate relative to previous approaches. We aim to
use PhyloParser to build a linked, open, comprehensive database
of phylogenetic information that covers the historical literature as
well as current data, and then use this resource to identify areas
of disagreement and poor coverage in the biological literature.

Keywords—Dendrogram, Phylogenetic Trees, Deep Learning,
Convolutional Neural Networks.

I. INTRODUCTION

Scientific results in the biomedical literature are frequently
presented visually with figures, diagrams, and tables, but the
information contained in these objects are inaccessible to text-
oriented computational approaches. As part of a larger research
agenda, we are working to develop a general framework for
information extraction from these visual elements in the liter-
ature using computer vision and machine learning approaches.

In this paper, we focus on extracting information from
phylogenetic trees. These trees are used extensively within ge-
netics, cladistics, conservation biology, medicine, public health
and many other areas of biology [1] to organize evolutionary
relationships between species into a hierarchy rendered as a
dendrogram (Figure 8). They are used to track the evolution
and spread of viral infections [2], migration of species [3], and
for comparing genetic sequences [4].

Public repositories for phylogenetic information have been
created including TreeBASE [5] and MorphoBank [6]. These
databases are intended to organize and aggregate results to help
build scientific consensus about the tree of life [7]. However,
these databases are relatively new, and are not comprehensive
for at least two reasons: Results from older papers are missing

entirely, and even among current papers, there is no mandate
to use these repositories. In 2017, there are more than 40 thou-
sands phylogenetic trees available on PubMed Central, which
is three times the number of trees available on TreeBASE.
More broadly, policies designed to encourage researchers to
clean and share their data have had limited success [8]. We aim
to use PhyloParser to construct a new database of phylogenetic
information, with goals similar to that of TreeBASE, but to
derive it automatically from the scientific literature itself to
increase coverage and reduce human effort.

Previous approaches to this problem either rely on human
input or are sensitive to noise, making them inadequate for our
purposes. For example, the interactive approach proposed by
Laubach et al. [9] would require hundreds of hours to process
typical datasets. Previous automated approaches rely on line-
tracing techniques that are sensitive to noise. The figures in
the literature are extremely heterogeneous: they may involve
complex annotations and background formatting, vary in size
and resolution, and use inconsistent spacing between lines,
text, and other elements. These complications prevent any
one method from being successful in all cases. Our approach,
in contrast, is to combine machine vision approaches with a
topological “grammar” of how these trees are constructed in
order to significantly reduce errors.

Our approach focuses on rectilinear dendrograms, which
account for 75% of all phylogenetic trees in a represen-
tative sample of the scientific literature. We automatically
recognize the fundamental components: horizontal branches,
vertical branches and the text of species names. We use Hough
transforms and convolutions to extract these components with
high recall, then filter false positives by applying topological
heuristics about how these components fit together. The tree
structure can be recovered by assembling these components
both top-down and bottom-up. This approach allows us to
ignore noise at the pixel level and enables partial recovery
of a dendrogram that may have poor global quality but good
local quality; we find this trait to be critical in extracting
information from characteristically noisy images in the lit-
erature. For instance, Hughes et al. used a dataset selected
to favor their approach [10]; even on this curated dataset,
our approach extracts 11% more perfectly recovered instances,
approximately 80% information from the imperfect cases, and
runs significantly faster.

The errors made by our algorithm tend to occur when the
resolution and the quality of the images are low, when the text
and the lines overlap, and when tree branches are of a color
very close to the background color. None of these sources of
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error appear insurmountable.
In this paper, we make the following contributions.

e We present a hybrid algorithm for parsing dendrograms
that recognizes the components of the diagram then re-
assembles them into a complete tree. This topological
approach is designed to be more resistant to noise effects
that limit the effectiveness of previous approaches.

e We evaluate this algorithm on real datasets used in prior
work as well as a new dataset extracted from one million
papers in PubMed. We find that our approach produces
more perfect reconstructions than the state-of-the-art, and
can also perform well on a significantly larger and more
diverse dataset than has been previously tested.

e While previous methods used datasets assembled by hand,
we train and evaluate two deep neural network architec-
tures (ResNet-50 [11] and AlexNet [12]) to automatically
recognize phylogenetic tree diagrams in the scientific
literature.

e We organize all of these methods into an end-to-end
system called PhyloParser that automatically extracts phy-
logenetic relationships in a machine-readable format from
any set of images.

o We released PhyloParser and all datasets we use in our
experiments online under permissive licenses to enable
future research.

This paper is organized as follows. In Section II, we
describe related work in figure classification and information
extraction. In Section III, we describe the algorithms in detail.
In Section IV, we evaluate PhyloParser on multiple datasets
and discuss the results. We conclude in Section V.

II. RELATED WORK

A number of studies have investigated techniques for ex-
tracting information from figures and tables. Early work from
Futrelle et al. [13], Zhou et al. [14], and Huang et al. [15] focus
on chart classification, but more recent work emphasizes the
extraction of quantitative data from scientific charts, including
2-D line charts [16], [17], [18], [19], bar charts [20], [21],
[22], and tables [23]. Elzer et al. studied the intended message
of bar and line charts [24], [25]. In 2011, Savva et al.
proposed ReVision, a system that automatically redesigns bar
charts and pie charts to improve graphical perception [20].
More recently, Chen et al. proposed DiagramFlyer [26], which
facilitates search over scientific figures given a x-label, y-label,
and corresponding ranges. In 2017, we proposed Viziometrics
[27], a system for mining figures at scale in order to study
the relation between graphical communication and scientific
impact.

These projects focused on parsing plots that present quanti-
tative data, but parsing diagrams is increasingly recognized to
be even more challenging. In 2016 Kembhavi et al. proposed
Diagram Parse Graphs, a model for parsing and studying se-
mantic interpretation of diagrams that illustrates relationships
between nature objects [28]. Compared to natural images,
visual illustrations encode rich knowledge that has been well
organized, which are potentially sources for artificial intelli-
gence studies.

In 2000, Rambaut proposed the first interactive tool to con-
vert a tree image into machine-readable format [29]. It requires

the user to reconstruct the tree by clicking on each of its nodes
in turn. In 2007, Laubach et al. proposed TreeSnatcher, a semi-
automatic application to recover the phylogenetic data under
the user’s supervising in GUI [9]. Later in 2012, they upgraded
the application with more interactive tools of image processing
and drawing function [30]. The semi-automatic application
effectively reduces the consuming time for accurately parsing
a tree. However, it is not a solution for parsing a large
collection. In 2011, Hughes proposed TreeRipper, an web
application automatically convert the tree image into NEXUS,
Newick and phyloXML formats [10]. The application aims
at both bifurcating and multifurcating trees, but it has strict
prerequisites for the style of input images. The algorithm
starts with a sequence of heuristic cleaning steps followed by
tracing the contour of the tree topology. The author reports 37
successful samples out of 114 phylogenetic tree diagrams. As
the pioneer of parsing tree, TreeRipper shares the same goal
with our study; however, it is not tolerant to uncleaned noise,
which is very crucial to the contour tracing and restricts the
accuracy of TreeRipper.

Since we first submitted this paper, Murray-Rust et al.
proposed a method for parsing 4336 rectilinear dendrograms
manually collected from the International Journal of System-
atic and Evolutionary Microbiology (IISEM) [31]. The authors
state that they selected dendgrograms from this journal because
the the diagrams in IISEM are consistent and typically created
from the same software. Further, the parsing algorithm is
not explained in detail, as the focus of their work was on
constructing a shared database.

III. PHYLOPARSER ALGORITHMS AND ARCHITECTURE

PhyloParser includes a classifier for identifying tree di-
agram (Section III-A) and a tree parser (Section III-B) for
recovering phylogenies from a tree diagram. We use Convolu-
tional Neural Networks (CNN5) to train figure type classifiers.
Our tree parser is designed for trees with the following
prerequisites, which are commonly met in practice:

e The tree is constructed by horizontal and vertical lines.

e The root is on the left and the leaves are on the right.

e The background color is lighter than the tree structure and
the text.

The algorithm starts from collecting key components of a
tree diagram and then assembles these components to recover
the tree structure.

A. Identifying Phylogenetic Trees

Seigel et al. [19] tuned a pre-trained AlexNet and ResNet-
50 using 60,000 scientific figures and showed that using
deep neural networks significantly improves the classification
of scientific figures compared to the previous state-of-the-
art approach [20]. Their model focuses on classifying plot
graphs such as bar plots, line plots, etc. We train the neural
networks on our own dataset to classify images into one of
eight categories (equations, photos, diagrams, tables, plots,
electrophoresis gels, metabolic pathways and phylogenetic
trees), but in this paper, we are only interested in the figures
labeled as phylogenetic trees. We describe the training dataset
in more detail in Section IV-A.
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Fig. 1. Pipeline of parsing a tree diagram. There are four stages: preprocssing,
tree component extraction, text extraction, and tree reconstruction. First, we
remove color background and separate text from tree diagram (gray box). Next,
we extract tree components (blue boxes) and specie names (pink boxes) from
the image. Finally, we connect the components to recover the tree structure
(green box).

We train the networks using the Caffe framework [32]
installed on an Amazon EC2 instance (g2.2xlarge). Iteration
stops when the accuracy of testing on validation data is steady
and invariant to decreasing learning rate. We describe the
experimental results in Section IV-B.

B. Parsing Phylogenetic Trees

Figure 1 illustrates the pipeline of our parsing algorithm.
We divide the algorithm into four stages: preprocessing (gray),
tree component extraction (blue), text extraction (pink), and
tree reconstruction (green). During preprocessing, we remove
any color background if it exists, then separate the tree
structure from the text. During tree component extraction, we
recognize tree components including vertical lines, horizontal
lines, corners, and joints. Then we reorganize the components
based on their connectivity. During the text extraction, we
locate text regions and convert them into text using standard
optical character recognition (OCR) to acquire species names.
In addition, we associate each species to the corresponding tree
leaf. During tree reconstruction, we assemble all components
together to recover the entire tree. In the following sections,
we will describe each stage.

1) Preprocessing: Our parsing algorithm is based on iden-
tifying horizontal and vertical line segments locally, then
topologically connecting these segments into a global tree. We
find that high-accuracy line detection at this stage is critical
to minimize parsing errors overall; our preprocessing steps are
therefore designed to optimize line detection.

Figure 2(A) gives an overview of the preprocessing steps.
The original image I,i4in is converted into the gray-scale
(Ugray) in the beginning. To make our algorithm scale invariant,
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Fig. 2. (A) Preprocessing steps that take the original image as input and
produce an image in gray-scale with any background removed, as well as
two masks: one for the tree pixels and one for the non-tree pixels. (B) To
remove the background patches, we use Canny edge detection followed by a
morphological close operation to produce a mask that covers the tree structure
as well as any text. We then apply the mask on the resized image I, -cs;zeqd tO
produce a temporary output /. Next we compared the histogram difference
between I; and I,..;..q to determine the intensity ranges of the color patches.
Finally we remove the background patches in I, s;-cq by Whitening the pixels
in these intensity ranges.

we resize Ig.qy to the dimension in which the line thickness
is normalized to be lower then four pixels. Without this step,
thick lines can be mistaken for dark patches that will be
removed in future steps. The line thickness is determined by
iteratively applying a morphological opening operation: an
erosion to reduce thickness followed by a dilation to expand
thickness, which can “open” connections between elements.
For each iteration, we increase the morphological kernel size.
The iteration terminates when the sum of pixel values in the
image is half of the sum of pixel values acquired from Ig;.qy
(indicating the tree structure has been completely erased), or
stops after 15 iterations. Too many iterations can make it
difficult to distinguish the lines from a dark background. In
this case, we do not resize the image. This operation produces
Lresizeqa as the output. Although rare, the method will remove
extra features if colors of the tree topology and the background
in the original image are highly similar.

Next, we remove color patches in the background of
Lresizeq- This process is illustrated in Figure 2(B). The color
patches decrease the gradient of tree boundaries, making it
difficult for the line detector to identify segments reliably.
To detect color patches, we use the Canny edge detection to
extract all boundaries, followed by a morphological close op-
eration with a 5x5 rectangular kernel to backfill the elements.
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Fig. 3. Basic components of a dendrogram. We use the Hough transform to
detect vertical lines and horizontal lines. To capture short lines that are likely
not captured by the Hough transform, we further detect joints and corners
using convolution operation and then match them to obtain more lines.

We use the output of this operation as a binary mask and
apply it on I,¢sizeq to produce a temporary image I;. The
color patches in [; are partially removed, so we can obtain
the intensities of color patches by comparing I,cs;.eq and I.
We compute the difference between the intensity histograms
of I; and I,.s;.cq and extract the ranges of intensities around
the peaks using the peakutils package from OpenCV. Finally,
we whiten the pixels in [,¢s;..q With the intensity within these
ranges. This operation produces I4_frc. as the output.

A common source of errors for line detection is text, so
we need to separate text from the tree structure. We acquire
contours in Iy, fr. by using the contour finder in OpenCYV,
then use the heuristic that the tree structure is typically the
largest contour in an image. This largest contour is used to
build a tree mask, and the remaining contours are used to build
a non-tree mask. We apply the two masks to distinguish the
main structure of the tree from other sources of lines, including
text.

Finally, we apply a bilateral filter on Iy fre. to sharpen
edges, which improves line detection specifically for thin lines.
The final output Ip,;cprocessed Of the preprocessing will be used
as the input of the next stages.

2) Tree Component Extraction: The main task in this stage
is to extract vertical lines and horizontal lines. We first use
the non-tree mask to whiten irrelevant regions in Ipyeprocessed
and binarize the filtered image with a threshold of 30. We
detect lines in the binary image using two approaches: Hough
transform [33] and endpoint detection.

The Hough transform can detect lines at given angles. We
only need vertical lines and horizontal lines. The text pixels
that are not successfully excluded by the mask can produce
many short lines. We identify and drop each short vertical
line l,¢, and each short horizontal line lj,, according to the
following two heuristics:

drop lyer if length(lyer) < 8 4 height(image)/100
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Fig. 4. Reconstruction logic. Our parsing algorithm is based on accurate
line detection. Beside using the Hough transform to detect lines, we also
extract lines by detecting corners and joints as shown in part (i) of (B). Texts
are located by contour finder and converted by Google Tesseract. In (B) We
visualize the concept of “Match Line” in part (ii), “Match Text” in part (iii)
and “Tree Reconstruction” in part (iv) to (vi).

drop lhor 1f length(lhor) < 3 + width(image)/100

We determined the threshold values 3 and 8 experimentally.
We set a higher threshold for vertical lines because the
minimum length of true vertical lines is usually longer than the
true horizontal lines in the tree topology. We determined that
our experimental results are not sensitive to this parameter in
the range 6 to 15 pixels. This filtering step removes a portion of
the true lines, pruning the tree. In a later stage, we will recover
the missing portion via bottom-up reconstruction methods.

A Hough-transform-based line detection, such as the one
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Fig. 5. To identify leaves, we train a model based on spatial features between
lines and text. We design the features to capture the unique pattern of leaves:
a vertex followed by text. We extract the raw pixels (colored red), along with
the horizontal distance between the right endpoint of a leaf and the mean
x-coordinate of the endpoints of all leaves. To determine these features, we
set hy = 3, hy, = 3, vy = 15, and v, = 9.

we use here, does not guarantee 100% recall. To increase
the recall, we capture the corners and joints (see Figure 3)
and pair them to acquire vertical lines and horizontal lines.
We first binarize the image with a threshold of 180. We use
simple convolution with the three masks shown in Figure 3
to expose top corners, bottom corners, and joints, refined by
two thresholds: (1) a high-pass threshold to include highly
responsive pixels and (2) a low-pass threshold to eliminate
highly responsive pixels that are entirely surrounded by black
pixels. Next, we pair top corners with bottom corners to create
vertical lines as well as corners with joints to create horizontal
lines (Figure 4(B)(1)).

Since multiple lines can be detected from a single thick
line, we group those lines that come from the same source
to avoid duplicate pairs in the next step. Figure 3 shows the
ideal result of line detection and corner detection. Next, we
connect vertical lines and horizontal lines to create branch sets
(Figure 4(B)(ii)). We associate each vertical line with right-
connected horizontal lines as a vertical-horizontal branch (v-
h-branch). For each horizontal line, we associate it with the
right-connected vertical line as a horizontal-vertical branch (h-
v-branch). These branch sets will be used in the tree recon-
struction process. The horizontal lines that are included in v-h-
branches but have no right connected vertical lines are defined
as “leaves,” which will be used to connect species names in
the text extraction stage. Since the leaves can generated from
the remaining text, we further use a binary classifier to verify
the leaves. The features selected are based on the assumption
that a leaf typically has an endpoint on the right followed by
text. As an example of how these features manifest in practice,
consider Figure 5. We use the pixel values in the red area as the
image feature, together with the horizontal distance between
the right endpoint of a leaf and the mean position of the right
endpoints of all leaves. We compile a training set containing
3368 positive examples and 1201 negative examples, extracted
from 100 tree diagrams (not included in the test set). We tested
several classifiers and finally chose a random forest that gives
the highest accuracy of 93.4%. Most of the false leaves are
produced from text that are extremely close to the vertical
lines. The classifier is effective to identify these “fake” leaves.

3) Text Extraction: The contours in the non-tree mask
represents the locations of characters, strings, and any other
irrelevant items such as arrows, photos, etc. For each contour,
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Fig. 6. Method of separating cross-line bonding box. Text in different lines
can be bonded together if they are very close. A reasonable segmentation can
be deducted from (1) other bonding boxes or (2) corresponding leaves. We seek
the first solution prior to the second solution, because the perfect segmentation
from the second solution only applicable when all corresponding leaves are
found.

we generate a bonding box for further use. Here, we eliminate
tall and thin bounding boxes that are unlikely to contain text.
We define these boxes as those satisfying two conditions: (1)
the aspect ratio (height / width) is greater than 10 and (2) the
height is also greater than 10.

Third, we generate leaf-text pairs (Figure 4(B)(iii)). For
each leaf, we associate it with the bounding boxes locating
right to the leaf. For the case that a bonding box links to
multiple leaves, we divide the bounding box in the follow-
ing methods: (1) Divide the bounding box based on nearby
bounding boxes that suggests a reasonable division (see lower
leaves in Figure 6). In this example, we separate “New World”
from “Hawks and” based on the known patterns “Vultures” and
“Eagles”. (2) For the case without such hint (see upper leaves
in Figure 6), we divide the bounding box at (y;,,, f —|—yl(;a+f1 ) )/2,
where ¢ denotes the associated leaf and y denotes the corre-
sponding location on y-axis. We found that approximately 50%
of our test images need such process to separate at least one
bounding box.

Some text may overlap the tree structure, and therefore be
erroneously considered part of the tree mask and be ignored
by the OCR step. To recover this text, we use the fact that
we know where the leaf ends after extracting horizontal lines.
Starting from this point, we scan the area to the right with
a 10-pixel-high box to seek missing text. Any recovered text
is then associated with the leaves and is used as the species
names in the next stage, while any text not associated with
any leaf (an orphan text box) will be used to identify missing
leaves.

4) Reconstruction: We reconstruct the tree by connecting
h-v-branches and v-h-branches with their common lines. How-
ever, this step does not guarantee a perfect reconstruction
because some vertical lines and horizontal lines are likely
missing in the step of detection. In this case, we obtain several
sub-trees. Each of these sub-trees will either be missing a
horizontal line at its root, or will have at least one broken
branch. A broken branch is a vertical line not connected to
at least two leaves on its right. To overcome this issue, we
develop two methods to search for the missing connection:

A. Search for any existed sub-trees or vertical branch in the
right area of the broken branch.
Search for any orphan text boxes in the right area of the

broken branch.

B.

Figure 4(B)(v) shows an example in which three sub-trees
are not linkable because of undetected lines (highlighted in
light gray). We reconnect the upper sub-tree and the lower



TABLE L. EVALUATION OF FIGURE-TYPE CLASSIFIER USING
HOLD-OUT TESTING SET WITH 1878 IMAGES.

Precision / Recall
Figure Type
AlexNet ‘ ResNet-50 ‘ Bag Of Feature [20]

Equation 98% 1 97% 97% 1 97% 97% 1 97%
Photo 95% 1 100% 95% 1 96% 93% 1 95%
Electrophoresis Gels 89% / 98% 96% | 97% 85% / 80%
Plot 98% 1 95% 94% | 94% 90% 1 91%
Table 100% / 97% 95% 1 94% 95% 1 94%
Diagram 88% / 92% 74% | T4% 75% | 14%
Metabolic Pathway 94% | 84% 84% | 76% 73% 1 71%
Phylogenetic Tree 99% / 89% 87% 1 93% 91% / 86%

Accuracy ‘ 95% ‘ 90% ‘ 88%

vertical branch using method A. Method B handles a particular
tree style that a tree does not use horizontal lines to tip species,
for instance the lower part in Figure 4(B)(v) and the top species
in Figure 4(B)(vi). For a broken branch, we associate it with
the orphan text boxes within a distance of 15 pixels, defined
by observation. Method B does not handle a rare case that
horizontal lines are used for both top and bottom leaves but
not for the middle leaves in a multifurcating tree.

The final step of tree reconstruction is merging the recov-
ered tree structure and species names (embedded in leaf-text
pairs and orphan text boxes). We have associated the text with
the leaves or the vertical branches in the previous steps, so we
only need to traverse the tree structure to produce the final tree
string in the Newick format.

IV. EVALUATION
A. Image Dataset

We use the annotated data from our previous work [27] and
additionally labeled 1411 electrophoresis gels, 1119 metabolic
pathways and 1308 phylogenetic trees to create a train-
ing corpus. We finally compiled an image set containing
18778 images: 1411 electrophoresis gels, 1871 equations, 1119
metabolic pathways, 3347 photos, 1308 phylogenetic trees,
2849 diagrams, 2193 tables and 4680 plots. We use this image
set to train classifiers using CNNs.

To evaluate our tree parser, we create a test image set
randomly collected from the 1308 phylogenetic trees. The
test image set includes only trees constructed by horizontal
lines and vertical lines, i.e. circular trees and cladograms are
not included!. In addition, we do not include low-resolution
trees with any ambiguous branches and species names that
are not readable by human. Despite that our approach is able
to recover these trees partially, we are not able to create an
absolutely correct ground-truth for a fair comparison. Finally,
we compiled a test image set consisting of 141 phylogenetic
tree images.

TABLE 1L EVALUATION OF THE TREE PARSER USING TREERIPPER
DATASET (100 IMAGES) AND OUR OWN DATASET (141 IMAGES).

Figure Type ‘ Error Rate Count of Perfect Extraction

PhyloParser Dataset

Base 0.238 39/ 141
Base + A 0.156 54/ 141
Base + A + B 0.148 51/ 141

TreeRipper Dataset [10]
TreeRipper N/A 37/114
Base + A 0.116 48 / 100
Base + A + B 0.120 44 /100

B. Figure Classification

We reserved 80% images for training, 10% images for
validation in training phase, and 10% images for testing. We
tested two methods for training the networks: (1) train the
networks from scratch, and (2) fine-tune the networks were
pretrained on the 1.2 million images from ImageNet [12]. We
received very similar results from the two methods so we just
reported the one with better performance for each architecture
(AlexNet trained from the scratch data and fine-tuned ResNet-
50) in Table L.

Both of these network architectures delivered higher accu-
racy than previous state-of-the-art approaches [20]. In contrast
to Siegel et al [19], we obtained the highest accuracy from
AlexNet trained from scratch. In general, classifying diagrams
and the corresponding sub-types are more difficult than other
types of figures due to the higher diversity, showing in all the
three models. In details of identifying phylogenetic trees, we
obtained better precision from AlexNet but better recall from
ResNet-50. Diagrams are the major false positives and false
negatives for the both models. The better f1-score is achieved
by AlexNet (0.94 vs 0.90.)

C. Tree Parser

We first compare our result to the work of Hughes [10]
as the baseline. The author released a set of 100 images
with the ground-truth parsed data.” In addition, there are 21
images containing two or more dendrograms respectively. We
manually segmented the 21 compound images and preserved
the one with provided ground-truth data. The author reported
37 trees that are successfully recognized. However, the au-
thor does not precisely define the meaning of ‘“successfully
recognized.” We consider the definition of the successful
case as “every node of the tree is correctly extracted” i.e.
“perfect extraction” according to the output of TreeRipper. Our
approach achieves perfect extraction from 48 dendrograms in
the published TreeRipper dataset (Table II).

Since our ultimate goal is to build a database of phyloge-
netic relationships, we can tolerate partial extractions in which
not every node in a dendrogram is successfully recognized.

I Circular trees and cladograms approximately accounts for 21.5% and 3.5%
phylogenetic trees respectively in the scientific literature.
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2This dataset does not appear to be the exact one used in the authors’ paper,
as that dataset contained 114 images.
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Fig. 7. Histogram of reconstructed trees categorized by error rates. The wide
bars show the figure counts and the thin bars show the average number of
nodes. We obtain 51 perfectly reconstructed trees and 108 reconstructed trees
with error rates below 0.2. The performance of our algorithm degrades when
the size of tree increases.

That is, any relationships we can extract from a dendogram is
potentially useful. And, we can potentially recover individual
misparsed errors using an aggregate statistical analysis over
a large corpus of trees, but this step is out of scope for the
current paper. For these reasons, we need a metric other than
the percentage of perfect extractions if we are to assess the
performance of our approach. We therefore use the Zhang-
Shasha distance (ZSD distance) [34] to measure the tree edit
distance between the recovered tree structure and the ground-
truth. ZSD distance considers three operations:

e Change one node label to another

e Delete a node. All children of the deleted node become
children of its parent

e Insert a node

One problem with this approach is that ZSD is sensitive
to the order of the siblings, but phylogenetic trees are not:
changing the order of siblings does not change the phylogeny.
We can ignore this issue, however, because our algorithm
naturally preserves sibling order during reconstruction.

We normalize the ZSD to the total number of true nodes
for each phylogenetic tree, defined as an error rate. An error
rate of zero indicates a perfect reconstruction. The normalized
value can be greater than 1.0 when the algorithm produces
many false positive branches and leaves. We do not evaluate
the performance of the Google Tesseract OCR engine, because
it is not the main contribution of this study. We therefore refer
to all species with a single name in our evaluation.

We evaluate our main tree reconstruction approach and the
two methods for searching missing leaves, branches, and sub-
trees. Table II shows the result obtained by using different
combination of searching methods. Since the released TreeRip-
per is not functional, we cannot evaluate the error rate of

TreeRipper. Base denotes the line-based reconstruction algo-
rithm; A is the method for connecting sub-trees and vertical
branches; B is the method for associating orphan text boxes.
We obtained the lowest mean error rate of 0.148 from Base +
A + B. It can be interpreted as that approximately 15 nodes
are missing, incorrectly located, or mistakenly created from a
tree containing 100 nodes. Method B is a trade-off strategy
because it can mistakenly create false leaves: we receive a
lower error rate on average but with fewer perfectly extracted
trees compared to Base + A.

Figure 7 shows the binned result in which each bin
represents a group of trees corresponding to a range of error
rate. The wide bars denote the counting numbers of trees. We
obtained 51 (36.2%) perfect recovered trees and 108 (76.7%)
trees with error rate below 0.2. The thin bars denote the average
numbers of nodes for the groups of trees. The average number
of node is 45 for the perfect bin (error rate = (), which
can be seen as a balanced binary tree with approximately 20
leaves. Our algorithm performs better on small trees rather
than large trees. The main reason for the degradation is that
components in large tree diagrams are dense or even occluded.
These large and dense trees are probably a consequence of
page limits for journals. The other chunks of failures are trees
with edges in extremely light colors. These lines are likely
erased by binarization or not detected by the Hough transform
and neither are the corners and joints.

Figure 8 shows the qualitative results of three phylogenetic
tree diagrams. We show the original figure on the left and the
regenerated figure from the Newick output on the right for each
sample. The left and the middle samples are considered perfect
in our evaluation; the right samples are partially recovered,
because the light lines are not successfully detected. The
Google Tesseract performs well for these tree diagrams. Only
a few species names are not correctly converted.

V. CONCLUSIONS AND FUTURE WORK

We have presented PhyloParser, a framework that auto-
matically identifies phylogenetic tree figures from scientific
literature, extracts the key components of tree structure, and
reconstructs them to recover the raw data of species relation-
ships. For the CNN-based classifier, we obtain 95% accuracy
for classifying scientific figures into 8 categories and 99%
precision for identifying phylogenetic tree diagrams. For the
tree parsing algorithm, we obtained an average error rate of
0.15 from our testing image set containing 141 tree diagrams
collected from scientific literature. Our tree parser does not
handle circular trees and cladograms, but we plan to extend
our algorithm to broader styles of tree diagram. To improve the
OCR results, we will correct the spelling errors by comparing
the string to existing taxonomy databases and the full-text
content of the original papers via minimum edit distance.
We are working to extract phylogenies from big scholar data.
The structure errors can be determined when we merge the
thousands of the trees; the supertree will therefore be proba-
bilistic in consideration of structure errors. We aim to construct
a database of species relationships automatically from the
scientific literature, validate these relationships against man-
ually constructed databases, and answer questions about the
coverage and veracity of the results, and how the confidence
of scientific results has changed over time.

1093



Image Source: Ericson et al., BMC Evolutionary Biology 2003

Laridae aindac
Stercorariidae raridac
Stemidae temidae
Rynchopidae ynchopidae

Glareolidae —Glareolidae
Burhinidae [—Butinidae
Chionidae [——Chionidae
Haematopodidas ematopodidae
Recurvirostridas ecunviostidse
Vanellinae L nellinae
aradricae

Galinagiina

Tinginae

[l

Charadriinae
Jacanidae
Rostratulidae
Gallinagininae
Tiinginae
Avenariinae
Calidrinae
Phalaropodinae
Thinocoridaz
Alcidae
Outgroups

All images are used under CC BY 4.0/ Modified from original.

Fig. 8.

Image Source: Hand et al., BMC Evolutionary Biology 2010
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Left: original figure, right: Re-visualization of the extracted phylogenies (the actual results are produced in the machine-readable Newick format).

The left and the middle phylogenetic tree diagrams are considered perfectly recovered in our experiment without evaluating OCR results. A few species names
are not converted correctly by Google Tesseract. The right sample shows a failure example that the sub-trees highlighted by light colors are missing. In the
regenerate figure, we use “**” to denote a broken branch.
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