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Figure 1. Stomatal network.  The image 
(taken with a confocal microscope) shows 
stomata (the bean-shaped structures) 
separated by epidermal cells on the surface 
of a Vicia faba leaf.  In this figure, the 
stomatal pore apertures are about 2 µm 
wide.   

 
Introduction 
 
Is the adaptive response to environmental stimuli of a biological system lacking a central 
nervous system a result of a formal computation?  If so, these biological systems must 
conform to a different set of computational rules than those associated with central 
processing.  To explore this idea, we examined the dynamics of stomatal patchiness in 
leaves.  Stomata—tiny pores on the surface of a leaf—are biological processing units that 
a plant uses to solve an optimization problem—maximize CO2 assimilation for a given 
amount of H2O loss.  Under some conditions, groups of stomata coordinate in both space 
and time producing motile patches that can be visualized with chlorophyll fluorescence.  
These patches suggest that stomata are nonautonomous and that they form a network 
presumably engaged in the optimization task.  In this study, we show that stomatal 
dynamics are statistically and qualitatively comparable to the emergent, collective, 
problem-solving dynamics of some cellular computing systems. 
 
Stomatal Networks 
 
Stomata are pores on the surfaces of 
leaves that permit the exchange of 
gases between the inside of the leaf 
and the atmosphere.   In most plants, 
stomata are between 30 and 60 µm 
long and occur at densities between 50 
and 200/mm2.  Figure 1 shows an 
image of a typical stomatal network.  
A stoma (singular) consists of two 
guard cells that change their shape, as 
a result of changes in internal water 
content via osmosis, thereby creating a 
pore of variable aperture. Gases 
diffuse through the open stomatal 
pores.  For example, CO2 enters the 
leaf, permitting photosynthesis to 
occur.  At the same time, water vapor 
escapes.  Excess water loss can have 
serious detrimental consequences for a 
plant, so plants are faced with a 
problem: under a given set of 
environmental conditions, how open or 
closed should the stomatal pores be?  
Plants solve this problem on a daily basis by solving what has been formalized 
mathematically as a constrained optimization problem (Cowan and Farquhar 1977).     
 
Traditionally, the constrained optimization model of plant biology treats stomata as 
autonomous units that respond independently to such environmental stimuli as light, CO2, 



Figure 2.  Patchy stomatal conductance.  
In this chlorophyll fluorescence image of a 
Cocklebur (Xanthium Strumarium) leaf, 
open stomata appear as dark areas and 
closed stomata appear as light areas (the 
veins do not contain stomata). The area 
shown is 2.54 x 2.54 cm, and contains over 
100,000 stomata. 

humidity, and H2O stress.  In the traditional formulation, the model predicts that, as long 
as environmental changes are sufficiently slow, stomatal conductance, g (determined 
primarily by aperture), varies as environmental conditions change such that 

(where A is the rate of CO2 uptake and E is the rate of water loss).  It also 
predicts that the spatial distribution of g should be essentially uniform when 
environmental conditions are spatially uniform, varying only because of small structural 
differences in stomata.  It has been shown, however, that groups of tens to thousands of 
stomata can behave drastically differently from stomata in adjacent areas even when 
environmental conditions are the same everywhere (Terashima 1992; Beyschlag and 
Eckstein 1998; Mott and Buckley 1998; Mott and Buckley 2000).   
 
This spatially heterogeneous behavior is called “stomatal patchiness.”  Stomatal 
patchiness can be dynamic, with complicated and apparently unpredictable spatial and 
temporal variations appearing over the leaf surface.  Figure 2 shows an example of 

stomatal patchiness with constant, 
spatially uniform environmental 
conditions.  The figure, taken in the near 
infrared, is of chlorophyll fluorescence.  
Under carefully controlled conditions, 
chlorophyll fluorescence can be 
interpreted in terms of stomatal 
conductance (Daley, Raschke et al. 
1989; Meyer and Genty 1998; West, 
Peak et al. 2004).  Stomatal patchiness is 
inconsistent with the constrained 
optimization model.  Nevertheless, it has 
been observed in over 200 species 
(Beyschlag and Eckstein 1998).  
Experiments have demonstrated that 
stomata can interact locally via 
hydraulic forces mediated by the 
epidermal cells between the stomata.  
Such forces may provide a mechanism 
for producing and sustaining the 
coordinated, stomatal behavior observed 
in patchiness (Haefner, Buckley et al. 
1997; Mott, Denne et al. 1997; Mott, 
Shope et al. 1999).   
 

Stomatal patches are often initiated by changing external humidity.  In experiments that 
we have conducted where an abrupt, spatially uniform humidity decrease is applied to the 
leaf, we observe a variety of stomatal responses.  In each case, the experimental region of 
the leaf starts in what appears to be a uniform steady state, with stomata approximately 
uniformly open.  As a result of the applied humidity drop, stomata tend to close.  How 
this closing is achieved, however, is remarkably variable.  Often, all stomata tend to close 
more-or-less uniformly.  In these cases, no patches are observed.  Sometimes patches 



form for a brief period, then quickly disappear.  In rare instances, patches persist for 
hours and display rich dynamics.  Which of the behaviors occurs in any one experiment is 
never predictable.  The variability we observe suggests that stomatal dynamics is 
exquisitely sensitive to microscopic conditions that we cannot directly control—a 
situation that is reminiscent of space-time systems with self-organizing dynamics (Bak 
1996).  We presume that, in our experiments our plants start with a roughly uniform gi, 
predicted by constrained optimization.  After we lower the humidity, our plants 
presumably seek out a new, optimal gf.  We are interested in how the transition from gi to 
gf occurs, and the role (if any) patches play in it.      
 
Cellular Computer Networks 
 
An artificial cellular computing system consists of individual units, “cells,” usually 
arranged in a regular one- or two-dimensional lattice.  Each cell is connected to some 
subset of other cells in the system.  The states of the cells are updated simultaneously 
according to a deterministic rule.  Depending on the degree of connectivity and the 
treatment of time, space, and state, a cellular computer can be categorized as a neural 
network (NN), a coupled map lattice (CML), a cellular neural network (CNN), or a 
cellular automaton (CA) (see Table 1). 

Cellular computing systems can perform global computational tasks.  Depending on the 
degree of connectivity, the completion of that task can be non-trivial.  For example, the 
performance of a global computation by an extensively connected network, where at any 
moment each cell has access to information from the entire system, is relatively simple.  
On the other hand, the same task performed by a strictly locally connected network, 
where at any moment each cell has access to a very limited amount of information from 
the entire system, is difficult.  If the global behavior is not explicitly defined by the 
deterministic behavior of individual network units then the computation is said to be 
emergent (Crutchfield 1994).  It has been shown that, in some locally connected CA that 
perform emergent computation, the global task is accomplished by  “patches of 
information” coherently propagating over large distances (Crutchfield and Mitchell 
1995).  In these example systems (in which information is processed strictly locally), 
global computation is achieved because distant regions of the system can communicate 
via coherent patch propagation.     
 

Table. 1.  Cellular Computer Networks.  A categorization of different artificial 
cellular computer types based on their connectivity and treatment of space, time, and 
state. C=continuous; D=discrete; E=extensive; L=limited. 

D D L D Cellular Automaton 

C C L D Cellular Neural Network 

C D E or L D Coupled Map Lattice 

C C E D Neural Network 

State Time Connectivity Space Model Type 



Figure 3.  Density classification by 
a 2D CA.  The configuration at t = 0 
is a random distribution of 1s 
(white) and 0s (black) with > 50% 
1s.  As time progresses the CA 
evolves to a steady state of all 1s, 
indicating that 1s were initially in 
the majority. 

t = 0 5 10 15 20 

An instructive example of this is the density 
classification task performed by a two-state 
CA (Gacs, Kurdyumov et al. 1978; 
Crutchfield and Mitchell 1995; Sipper 
1997).  In one version of this task, the CA 
starts with any initial distribution of 0 and 1 
states. The density of this initial 
configuration is said to be “classified” if the 
CA eventually evolves to a state of all 1s if 
the initial configuration had more 1s than 
0s, and to all 0s, otherwise.  Figure 3 shows 
an example of a two-dimensional CA 
performing density classification.  In this 
CA, each cell shares information with only a few of its nearest neighbors, yet the system 
as a whole manages to correctly assess that 1 was initially the majority state.  No cell 
individually performs the density classification task in the CA shown:  the global result 
emerges from the strictly local interaction of the component cells.  Note that, shortly after 
the CA in Figure 3 begins to evolve, patches form and move coherently across the CA 
space.   
 
In general, the farther the initial density is from 0.5 the more quickly and more accurately 
a density classifier CA will perform the classification task.  For densities close to 0.5, the 
task becomes more difficult, though some CAs still perform fairly well even under these 
circumstances.  We have made an exhaustive study of the behavior of very good 1D and 
2D density classifier CAs for initial densities near 0.5.  In our study, we start each time 
with exactly the same macroscopic initial density but with different microscopic 
configurations.  In the vast majority of instances, these good classifiers quickly achieve a 
correct steady state.  Much less frequently, the CAs take an inordinately long time (if 
ever) to reach steady state.  The difference between two initial configurations that lead to 
rapid and protracted transients can be as little as two cells.  Which initial configurations 
produce long transients is never predictable.  In other words, density classifier CAs 
exhibit sensitive dependence on the microscopic details of their initial configurations. 
    
A comparison of stomatal networks and cellular computer networks 
 
Our discussion of stomatal networks and cellular computers identifies a number of 
suggestive similarities.  Both are able to perform sophisticated global tasks even though 
distantly separated parts of the respective systems are not directly connected.  Both show 
evidence of extreme sensitivity to microscopic system details.  Both manifest dynamic 
patchiness, which, in the case of cellular computers, at least, is the mechanism by which 
global problem solving is accomplished.  One wonders whether these similarities are 
merely accidental or if there are deeper, more quantitative connections between stomata 
and cellular computers. 
 
To probe this question we have closely examined some of the statistical properties of the 
dynamics of these two different kinds of networks.  Because stomata have continuous 



aperture states that change asynchronously and continuously in time, while CAs have 
discrete states that change synchronously in discrete time, statistical similarities in their 
dynamics are not expected a priori.  On the other hand, both stomata and CAs that 
compute appear to harbor the same kind of collective behavior that has been observed in 
simulations of self-organized critical systems (Bak, Tang et al. 1987).  Taking a cue from 
such simulations, we have calculated Fourier spectra, Hurst’s rescaled range (R/S) 
statistics, and event waiting distributions for both stomata and for several 1D and 2D 
density classifier CAs.   
 
Data for stomatal networks were obtained from chlorophyll fluorescence images 
(512x512 pixels) from three different experiments during which extended dynamical 
patchiness occurred.  We examined (512 entry) intensity time series for each of 50,000 
randomly chosen pixels in our data sets.  From these we calculated Fourier spectra and a 
summed power spectrum.  The same data were used to calculate the Hurst R/S statistic.  
We defined an “event” as an unusually large change in pixel intensity (for a more 
detailed description see Peak, West et al. 2004) and calculated the distribution of time 
between successive events at each pixel.  
 
The same statistics were calculated for 1D and 2D density classifier CAs.  A good density 
classifier typically reaches steady state in a time that is too short to produce reasonable 
statistics.  Thus, to protract the dynamics, we injected low amplitude white noise in the 
form of occasional random state flips.  This perturbation introduces spurious high 
frequency variations in the dynamics, so care has to be taken to filter out its effects.  
Event waiting times were extracted from examples of unusually long, but unperturbed, 
transients.  We defined an “event” in these studies as a change in patch type at a cell, 
specifically, as a time series of 1111 followed by a 0, or 0000 followed by a 1, or 1010 
followed by a 0, or 0101 followed by a 1. 
 
A summary of the statistical results is presented in Table 2.  The spectral densities, S(f), 
of the dynamics of all three network types (stomata, 1D and 2D CAs) have extended 
regions that are well fit by a power law, , with exponents (PF) ~2. The Hurst 
exponent, H, of the power law expression  (where d is the time delay) should be 
related to the spectral density exponent by PF = 2H+1.  The calculated values of PF and H 
for the 2D CAs we examined and for our stomatal networks fit this relationship well. The 
waiting time frequency distributions for the three network types are fit well by a power 
law, .  In studies of self-organized dynamics it is found that the value of PW 
depends sensitively on the specific details of the system (Christensen and Olami 1992).  
It is therefore not surprising that PW for stomatal networks and density classifying CAs 
might be different.  What is surprising is that these distributions are all power laws.  The 
results presented here are strong evidence that stomatal networks and cellular computers 
are dynamically close cousins. 



 

Conclusion 
 
Plants plausibly achieve an optimum stomatal aperture for a given set of environmental 
conditions.  When a plant is presented with a “difficult problem” (e.g., an abrupt change 
in humidity), groups of stomata can form collective dynamical patches, contrary to the 
constrained optimization model of plant biology.  We argue that the qualitative and 
quantitative features of stomatal patches are essentially indistinguishable from those 
found in locally connected cellular computers that perform global computational tasks.  
This leads us to conjecture that the reason so many plant species exhibit stomatal 
patchiness may be that, through their stomata, plants are performing a sophisticated kind 
of problem solving that is similar to emergent computation.  Unambiguous resolution of 
this conjecture awaits the development of sharper tools than now exist for quantifying 
computation, especially as it exists in natural systems. 
 
 
 
 
 
 
 
 
 
 
 
 

Table. 2.  Statistical Summary.  A summary of the statistical properties of stomatal 
networks and locally connected density classifying CAs that exhibit patches during the 
problem-solving process.  PF is the exponent of the power law expression  fit to 
the Fourier spectra.  H is the exponent of the power law expression  where R/S is 
Hurst’s rescaled range statistic and d is the time delay.  PW is the exponent of the expression 

 where FW is the frequency of the waiting-time and W is the waiting-time.   
** insufficient data to calculate this statistic. 

2.35 ± 0.19 

2.73 ± 0.24 

1.96 ± 0.11 

2.22 ± 0.14 

1.77 ± 0.23 

1.15 ± 0.21 

PW 

0.35 ± 0.08 

0.44 ± 0.05 

0.60 ± 0.05 

0.54 ± 0.02 

** 

0.60 ± 0.03 

H 

1.84 ± 0.17 

1.91 ± 0.12 

2.16 ± 0.12 

1.99 ± 0.11 

1.98 ± 0.12 

1.94 ± 0.10 

PF 

0.93 0.96 0.99 2-D CA Case 4 

0.92 0.96 0.99 2-D CA Case 3 

0.97 0.96 0.99 2-D CA Case 2 

0.96 0.99 0.99 2-D CA Case 1 

0.91 ** 0.99 1-D CA 

0.93 0.94 0.99 Stomatal Network 

R
2

 R
2 R

2 System 
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