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Abstract

Eigenfactor: ranking and mapping the scholarly literature

Jevin D. West

Chair of the Supervisory Committee:
Professor Carl T. Bergstrom

Department of Biology

Each year, tens of thousands of scholarly journals publish hundreds of thou-

sands of scholarly papers, collectively containing tens of millions of citations.

As De Solla Price recognized in 1965, these citations form a vast network

linking up the collective research output of the scholarly community. These

well-defined and well-preserved networks are model systems well suited for

studying communication networks and the flow of information on these net-

works. In this dissertation, I explain how I used citation networks to develop

an algorithm that I call ’Eigenfactor.’ The goal of Eigenfactor is to mine

the wealth of information contained within the full structure of the scholarly

web, in order to identify the important nodes in these networks. This is dif-

ferent from the conventional approach to scholarly evaluation. Metrics like

impact factor ignore the network when ranking scholarly journals and only

count incoming links. Eigenfactor not only counts citations but takes into

account the source of those citations. By considering the whole network,

I claim that Eigenfactor is a more information rich statistic. Librarians,

publishers, editors and scholars around the world are now using Eigenfactor



alongside impact factor to evaluate their journal collections. This disserta-

tion consists of a collection of papers that provide an overview of Eigenfactor

— what it is, what it measures and how it can be used to better evaluate

and navigate the ever-expanding scholarly literature.
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Chapter 1

Introduction

1.1 The ’network’ matters

When I started graduate school, I was given the following advice...

”work on interesting problems, problems that are messy and problems

that get you excited; don’t consider disciplinary boundaries; teach; write a

few papers; and most importantly, surround yourself with good people.”

My graduate experience was all that and more. I came to the Univer-

sity of Washington five years ago interested in complex systems, networks,

information theory and evolutionary ecology. I had the opportunity to work

on each one of those things, but the project that really got me excited and

the project I contributed most to is something that I call ’Eigenfactor.’

Carl Bergstrom and I came up with the word ’Eigenfactor’ back in 2005

over conversations on how to better evaluate scholarly work. Carl was in-

terested in the economics of scholarly publishing and had written several

papers with his father, Ted Bergstrom, about the subject [8, 11, 7]. Among

the thousands of journals that are published each year, which journals con-

tribute most to the moving frontier of science? Which journals are the best
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value to have in a librarian collection? Which are the best journals to read?

And which journals are the best to publish in? For most of the last century,

citation counts and impact factor have been the tools used to answer these

questions [30, 28].

I was interested in networks and had done some work studying dis-

tributed computation on stomatal networks [44, 63]. The scholarly liter-

ature seemed an enticing next system to work on. It formed a vast network,

where the links represent citations and the nodes represent journals1 [19].

Can we use this kind of network to better evaluate scholarly journals, to

build maps of science and to better navigate the scholarly web? And, if so,

what additional information do we gain by taking into account the source

of citations (the topic of Chapter 3)?

Through our conversations about citation networks and scholarly eval-

uation, we realized something very odd. We knew the scholarly literature

formed a massive network that is well-definied and well-preserved. We knew

that the ’network’ matters — that how a system is connected affects the

individuals in that system and how that system functions. So, why had this

network property of the scholarly literature largely been ignored throughout

the first century of scholarly evaluation?

The aim of Eigenfactor was to do exactly this — to take into account the

source of citations when ranking the influential nodes in these massive com-

munication networks. More generally, Eigenfactor extracts the structural

information of networks in order to measure information flow.
1The nodes can also represent authors, papers or institutions. Chapter 4 explains how

the Eigenfactor approach can be extended to author citation networks.
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This dissertation is about Eigenfactor and how it does this for journal

citation networks2. In this collection of papers, I hope to convey why I think

this is exciting and where I see it going.

1.2 Eigenfactor

As far as we know, the word ’Eigenfactor’ did not exist pre-2005. Back in

2005, we tried to find any consistent use of the word using various kinds of

search engines. We found nothing, so this is the word we have used and it

has stuck.

Eigenfactor, the word, is an amalgamation of two terms: eigenvector

centrality and impact factor (see Chapter 2 for more details). It is both

an algorithm and a project. At the core of the Eigenfactor algorithm is

eigenvector centrality [16], and the impetus for developing the algorithm was

impact factor [27]. Together, these two terms began what I call Eigenfactor,

the project.

Today, Google now finds over 7 million pages on the web that mention

the word3. Carl and I have been invited to talk about Eigenfactor at places

around the world4. It is mentioned in over seventy scholarly publications. It
2The title of the dissertation, Eigenfactor: ranking and mapping scientific knowledge,

is also the title at Eigenfactor.org — the website we built to disseminate the results of
this project. This website and this form of scholarly communication has been central to
the work that I will describe in this dissertation.

3This search was conducted on August 1, 2010. These kinds of blanketed searches can
be misleading; however, it is not the absolute number that I care about. I just want to
show that the number is far great than zero — zero being the number of results we found
using Google just five years ago when we first came up with word and wanted to see if
anyone else had used it before.

4Some of these invited talks can be found at http://octavia.zoology.washington.

edu/people/jevin/Presentations.html
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is used by librarians, publishers, editors, administrators and scholars around

the world to evaluate scholarly journals. And, the metric is now included in

Thomson-Reuters’ annual Journal Citation Reports. So, why this response?

Chapter 5 addresses this question.

The Eigenfactor algorithm and the Eigenfactor project focus in on two

questions. The algorithm aims to answer the following question:

How does one evaluate the scholarly literature using the entire

citation network, but only the citation network?

This has become an important question for librarians, publishers, editors,

administrators and scholars. Limited time and limited budgets require tools

that can help evaluators determine which journals, papers or researchers are

contributing most to science.

The overarching question of the Eigenfactor project is more general.

How does network structure affect function?

The project therefore encompasses the algorithm, the philosophy and ap-

proach to network science and information aesthetics, the mapping of sci-

ence, the economics of scholarly publishing and a whole new series of projects

and data that share the common theme of being big, and highly connected.

This relationship between structure and function is a central question for

those who study networks, but it is also a fundamental question for my field

of biology.

This question is far from being answered, but fortunately there now

exists a great model system — citation networks — for testing these ideas

4



and stimulating further theory. The links and nodes are well-defined, the

networks are readily available and there exists a treasure trove of interesting

stories in the data. The Eigenfactor project takes advantage of this massive

network (of thousands of nodes and millions of links that have been perfectly

preserved over hundreds of years) and develops statistics and visualizations

to extract those stories and track how the flow of information on these

networks is changing over time.

The obvious application of the Eigenfactor algorithm is easy to see and

tends to overshadow these fundamental questions. In this dissertation, I will

spend most of my time talking about the algorithm — how it works, what

it measures (Chapter 2), how it differs from existing metrics (Chapter 3)

and how it can be extended to other types of citation networks (Chapter 4)

— but it is the fundamental questions involving structure and function that

I am most excited about and the types of questions that will keep science

busy for decades to come.

1.3 Chapter Explanations

Chapter two is an introduction to the Eigenfactor Metrics. My co-authors

and I explain what the Eigenfactor Score and Article Influence Score mea-

sure and briefly explain how these metrics differ from Impact Factor. The

paper was originally written for librarians and published in one of their

top journals (College and Research Libraries) [62]. However, I often rec-

ommend this paper to publishers, administrators and scholars who want a

non-mathematical introduction to the algorithm.
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Chapter three is a paper that was published in the Journal of the Ameri-

can Society for Information Science and Technology (JASIST) [59]. It was a

response to a previously published paper in JASIST that questioned whether

eigenvector centrality measures like Eigenfactor provide additional informa-

tion beyond just counting citations or calculating Impact Factor scores [18].

We show the statistical fallacy in the author’s argument, we point out the

spurious correlation that he found, and we conduct a much more thorough

investigation into the relationship between degree centrality measures and

eigenvector centrality measures.

Chapter four extends the Eigenfactor approach to author-level citation

networks and explains some of the challenges when working with author-level

data that is temporally directed. Author-level Eigenfactor scores are calcu-

lated on data extracted from the Social Science Research Network (SSRN)

at Harvard5. Economists, lawyers and social scientists post their pre-prints

and post-prints at this archive. The goal of this type of archive is to de-

crease the time for disseminating ideas and for connecting the community

for search reasons.

Chapter five is a reflections chapter. The Eigenfactor project has received

a fair amount of attention over a short time period. What explains this? I

provide a list of possible explanations and reflect on the importance of each.

The Appendix includes code and pseudo-code that I have written over

the last several years that won’t be published in any journal but probably

is used more than any of my published papers. The dissertation seemed to

be the perfect place to put this work. I have also included a couple of the
5More information can be found at http://www.ssrn.com/
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commentaries I have written about Eigenfactor.

This dissertation, of course, is far from complete. There are missing

articles that I should have included. And, tomorrow there will something

new we think about that I should have put in the dissertation. Fortunately,

there are two places that are better for finding out about the current and

new stuff we are up to and all the other stuff I should have included.

1. My website: http://octavia.zoology.washington.edu/people/jevin/

2. The Eigenfactor website: www.eigenfactor.org
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network approach to assessing

scholarly journals
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Abstract

Limited time and budgets have created a legitimate need for quantitative

measures of scholarly work. The well-known journal impact factor is the

leading measure of this sort; here we describe an alternative approach based

on the full structure of the scholarly citation network. The Eigenfactor

Metrics — Eigenfactor Score and Article Influence Score — use an iterative

ranking scheme similar to Google’s PageRank algorithm. By this approach,

citations from top journals are weighted more heavily than citations from

lower-tier publications. Here we describe these metrics and the rankings

that they provide.
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2.1 The Need for Alternative Metrics

There is only one adequate approach to evaluating the quality of an individ-

ual paper: read it carefully, or talk to others who have done so. The same

is largely true when it comes to evaluating any small collection of papers,

such as the publications of an individual scholar. But as one moves toward

assessment challenges that involve larger bodies of work across broader seg-

ments of scholarship, reading individual papers becomes infeasible and a

legitimate need arises for quantitative metrics for research evaluation.

The impact factor measure is perhaps the best known tool for this pur-

pose. Impact factor was originally conceived by Eugene Garfield as way

of selecting which journals to include in his Science Citation Index [27],

but its use has expanded enormously: impact factor scores now affect hir-

ing decisions, ad placement, promotion and tenure, university rankings and

academic funding [41]. With so much at stake, we should be careful how

aggregate, journal-level metrics like impact factor are used1.

Impact factor has certain advantages as a citation measure: it is widely

used and well understood. Moreover it is simple to calculate, and simple

to explain. But this simplicity comes at a cost. Impact factor tallies the

number of citations received, but ignores any information about the sources

of those citations. A citation from top tier journal such as The American

Economic Review is weighted the same as a citation from a journal that is
1Because of the large skew in the distribution of citations to papers in any given journal

[47], the quality or influence of a single paper is poorly estimated by the impact factor
of the journal in which it has been published. For example, in 2005 the journal Nature
reported that 89 percent of its impact factor came from 25 percent of its papers [21]. As
a result, most papers from this journal are over-inflated by this method and some are
greatly under-inflated.
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rarely cited by anyone. Accounting for the source of each citation requires

a more complicated computation, but the reward is a richer measure of

quality. The Eigenfactor Metrics take this approach.

2.2 The Eigenfactor Metrics

Each year, tens of thousands of scholarly journals publish hundreds of thou-

sands of scholarly papers, collectively containing tens of millions of citations.

As De Solla Price recognized in 1965[19], these citations form a vast network

linking up the collective research output of the scholarly community. If we

think of this network at the journal level, each node in the network repre-

sents an individual journal. Each link in the network represents citations

from one journal to another. The links are weighted and directed: strong

weights represent large numbers of citations, and the direction of the link

indicates the direction of the citations (see Figure 2.1). By viewing citation

data as a network, we can use powerful algorithmic tools to mine valuable

information from these data.

The most famous of these tools, known as eigenvector centrality, was

first introduced by sociologist Phillip Bonacich in 1972 as a way of quanti-

fying an individual’s status or popularity in communication networks [16].

Bonacich’s aim was to use a network structure’s to figure out who were the

important people in the network. How do we tell who are the important

people? They are the ones with important friends, of course. While this

answer may sound circular, it turns out to be well-defined mathematically,

and moreover the “importances” of individuals in a network are easy to com-

11



Jrn A

Jrn D

Jrn C Jrn B

Figure 2.1: A small journal citation network. Arrows indicate citations from
each of four journals, A, B, C, and D, to one another. The size of the nodes
represent the centrality of each node in the network, determined by the
Eigenfactor Algorithm. Larger, darker nodes are more highly connected to
other highly connected nodes.

pute in a recursive manner. The most prominent commercial application of

eigenvector centrality is Google’s PageRank algorithm, which ranks the im-

portance of websites by looking at the hyperlink structure of the world wide

web [42]. Researchers have likewise applied this approach to a number of

other network types, including citation networks [46, 37, 32, 43, 34, 12].

The concept of eigenvector centrality is at the core of the Eigenfactor

Metrics as well[6]. The idea is to take a network like the one shown in

Figure 2.1 and determine which journals are the important journals. The

importance depends on where a journal resides in this mesh of citation links.

The more citations a journal receives—especially from other well connected

journals—the more central the journal is in the network.

There are a number of ways to think about the recursive calculations by

12



which importance scores are determined. For our purposes, it is particularly

useful to think about the importance scores as coming from the result of a

simple random process:

Imagine that a researcher is to spend all eternity in the library randomly

following citations within scientific periodicals. The researcher begins by

picking a random journal in the library. From this volume she selects a ran-

dom citation. She then walks over to the journal referenced by this citation.

From this new volume she now selects another random citation and proceeds

to that journal. This process is repeated ad infinitum.

How often does the researcher visit each journal? The researcher will

frequently visit journals that are highly cited by journals that are also highly

cited. The Eigenfactor score of a journal is the percentage of the time that

the model researcher visits that journal in her walk through the library2. So

when we report that Nature had an Eigenfactor score of 2.0 in 2006, that

means that two percent of the time, the model researcher would have been

directed to Nature.

Figure 2.1 provides an example network where this idea of centrality

can be explored further. Because of the simplicity of the network, it is not

difficult to see that in Figure 2.1 the most central node is Journal B. It

receives more incoming links than any other node. The size of this node
2The Eigenfactor Algorithm expands somewhat upon the basic eigenvector centrality

approach to better estimate the influence of journals from citation data. Further details are
provided at http://www.eigenfactor.org/methods.htm. The full mathematical description
of the Eigenfactor Algorithm is available at http://www.eigenfactor.org/methods.pdf. In
addition, a pseudocode description that provides the recipe for the calculation is available
at http://www.eigenfactor.org/methods.htm.
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in Figure 2.1 reflects this centrality. If citations are a proxy for scientific

importance, this journal would likely be a key component of a library’s

collection.

Real citation networks are much more complicated than the one in Fig-

ure 2.1. At Eigenfactor.org, we present metrics based on a network of 7,600

journals and over 8,500,000 citations, using data from the Thomson-Reuters

Journal Citation Reports (JCR)3. With networks of this size, we need a

fast computational approach to assess the importance of each journal. For-

tunately, the Eigenfactor Algorithm computes the importance values for a

network of this size in a matter of seconds on a standard desktop computer.

We use the Eigenfactor Algorithm to calculate two principal metrics that

address two different questions: EigenfactorTM Score and Article InfluenceTM

Score. If one is interested in asking what the total value of a journal is—

in other words, how often our model researcher is directed to any article

within the journal by following citation chains—one would use the Eigen-

factor score. When looking at the cost-effectiness of a journal, it is therefore

useful to compare subscription price with Eigenfactor score. Table 2.2 lists

the top twenty journals by Eigenfactor Score in 2006.

The Eigenfactor Score is additive: to find the Eigenfactor of a group of

journals, simply sum the Eigenfactors of each journal in the group. (One

cannot do this with a measure such as impact factor or Article Influence,

discussed below.) For example, the top five journals in Table 2.2 have an

Eigenfactor sum of 8.909. This means that a researcher spends approxi-
3As of February 2009, the Thomson-Reuters Journal Citation Reports also includes

the Eigenfactor Metrics
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mately 8.909 percent of her time at this five journals (and thus these five

are an important backbone of a science library collection). This additive

property can be very useful for collection managers that deal with jour-

nal bundles such as Elsevier’s Big Deal, because the Eigenfactor Score of a

bundle is just the sum of the Eigenfactor scores of its constituent journals.

With all else equal, bigger journals will have larger Eigenfactor Scores:

they have more articles and so we expect them to be visited more often. But

in scholarly publishing, the most prestigious journals are not necessarily the

biggest. They are ones that receive the most citations per article. These

are the journals that (in the good old days of paper) would be tattered and

worn from being pulled off the shelf so many times. The Article Influence

Score measures the influence, per article, of a given journal and such is

directly comparable to Thomson-Reuters’ impact factor metric. The Article

Influence Score is calculated as a journal’s Eigenfactor Score divided by the

number of articles in that journal, normalized so that the average article in

the Journal Citation Reports has an Article Influence Score of 1. Table 2.2

lists the top 20 journals by Article Influence. As is the case with impact

factor scores, review journals will score higher because of the large number

of citations that individual articles in these journals receive. Thus, it can

be important for some applications to compare non-review journals with

non-review journals and review journals with review journals.

The difference between the two measures is best illustrated with an ex-

ample. The journal PLOS Biology has an Eigenfactor Score of 0.089. This

means that the random walker in the library spent a non-trivial 0.089% of

her time at this journal — not bad, given that there are 7611 journals in
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Journal EF AI Field
1 NATURE 1.992 17.563 MCB
2 SCIENCE 1.905 18.287 MCB
3 PNAS 1.830 5.153 MCB
4 J BIOL CHEM 1.821 2.395 MCB
5 PHYS REV LETT 1.361 3.433 Physics
6 J AM CHEM SOC 0.959 2.689 Chemistry
7 PHYS REV B 0.856 1.345 Physics
8 APPLY PHYS LETT 0.749 1.768 Physics
9 NEW ENGL J MED 0.718 16.825 Medicine
10 ASTROPHYS J 0.689 2.264 Astrophysics
11 CELL 0.659 17.037 MCB
12 CIRCULATION 0.548 4.273 Medicine
13 J IMMUNOL 0.527 2.446 MCB
14 J NEUROSCI 0.508 3.443 Neurosciece
15 LANCET 0.500 8.635 Medicine
16 BLOOD 0.474 3.190 MCB
17 JAMA 0.455 10.290 Medicine
18 ANGEW CHEM 0.453 3.254 Chemistry
19 J PHYS CHEM B 0.441 1.658 Physics
20 CANCER RES 0.430 2.721 MCB

Table 2.1: Top 20 Journals by Eigenfactor Score (EF). The Article Influence
Score (AI) are also shown. The journals and citation data are from the
Journal Citation Reports (2006) produced by Thomson-Reuters. MCB is
molecular and cellular biology. These rankings, as well as those for all of
the other journals in the JCR, can be found at www.eigenfactor.org.

the JCR. As a result, PLoS Biology is ranked as the 179th most influential

journal by Eigenfactor Score, putting it in the top 3% of all journals in the

JCR. But PLoS Biology is a small journal; it achieves this high Eigenfactor

Score even with relatively few articles. Therefore, when we assess this jour-

nal by its Article Influence Score, it does even better. The Article Influence

Score of PLoS Biology is 9.63, ranking it 33rd for 2006 and placing it in the

top 0.5% in the JCR.
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Journal EF AI Field
1 ANNU REV IMMUNOL 0.090 27.454 MCB
2 REV MOD PHYS 0.098 24.744 Physics
3 ANNU REV BIOCHEM 0.077 23.194 MCB
4 NAT REV MOL CELL BIO 0.189 20.252 MCB
5 SCIENCE 1.905 18.287 MCB
6 NATURE 1.992 17.563 MCB
7 ANNU REV CELL DEV BI 0.057 17.497 MCB
8 ANNU REV NEUROSCI 0.055 17.449 Neuroscience
9 NAT REV CANCER 0.136 17.272 MCB
10 CELL 0.660 17.037 MCB
11 NEW ENGL J MED 0.718 16.825 Medicine
12 NAT REV IMMUNOL 0.131 16.766 MCB
13 PHYSIOL REV 0.068 16.037 MCB
14 NAT IMMUNOL 0.242 14.830 MCB
15 Q J ECON 0.073 14.671 Economics
16 CA-CANCER J CLIN 0.031 13.944 Medicine
17 NAT REV NEUROSCI 0.122 13.912 Neuroscience
18 ANNU REV ASTR 0.027 13.848 Astrophysics
19 NAT MED 0.265 13.579 MCB
20 NAT GENET 0.323 13.337 MCB

Table 2.2: Top 20 Journals by Article Influence Score (AI). The Eigenfactor
Score (EF) is also shown. The journals and citation data are from the
Journal Citation Reports (2006) produced by Thomson-Reuters. MCB is
molecular and cellular biology. These rankings, as well as those for all of
the other journals in the JCR, can be found at www.eigenfactor.org.
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2.3 Article Influence and Impact Factor Differ-

ences

Any time a new metric is introduced, the first question that arises is how

the new one differs from the previous standard. We have already discussed

the theoretical considerations in favor of the Eigenfactor approach; here we

turn to the empirical differences between rankings based on the Eigenfactor

Metrics and those based on Thomson-Reuters’ journal impact factor. Be-

cause impact factor is a per-article measure, we compare it to our per-article

measure, the Article Influence score.

Impact factors and Article Influence Scores are derived from the same

underlying journal citation data, and as a result we see considerable corre-

lation between these measures4. Despite the correlations, there are many

individual journal rankings that change considerably from one measure to

the next. The left column in Figure 2.2 lists the top 35 Economics journals

by impact factor. The right column lists the top 35 Economics journals

by Article Influence and their respective Article Influence Scores. The lines

connecting the two columns indicate the changes in relative ranking between

the two different measures. Journals indicated in grey are journals that do

not exist in both columns. For example, Health Economics—the 13th best

journal by impact factor—is not even in the top 35 journals when ranked

by Article Influence Score. Although similarities exist between the relative

rankings ranked by impact factor and Article Influence, the connecting lines
4You can view these relationships at http://www.eigenfactor.org/correlation/.
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in the figure illustrate that there are marked differences as well5.

There are several reasons for these differences. We have already discussed

the way that the Eigenfactor Metrics account for differences in the prestige

of the citing journal. They also adjust for differences in citation patterns.

Impact factors vary widely across disciplines due to differences in the number

of citations in a typical paper, in the prevalence of citations to preprints, in

the average age of cited papers, and other considerations [2]. The random-

walker model used to derive the Eigenfactor Metrics is relatively insensitive

to these differences, because with the Eigenfactor Metrics, we look at the

proportion of citations going to any given source rather than at the absolute

number going to that source. In a field that cites 80 articles per paper,

each citation is worth only 1/80th of a vote, so to speak, whereas in a

field that cites 10 articles per paper, each citation is worth 1/10 of a vote.

For example, health economics journals and economic geography journals

tend to have longer reference lists, cite fewer preprints, and have shorter

intervals between citations than do journals in other areas of Economics;

as a result, their impact factor scores are inflated relative to other areas of

Economics. This bias is reduced when we look at the Article Influence Scores

(Figure 2.2). We see a similar pattern when looking at Article Influence and

impact factor scores between disciplines. The differences between fields—

although not fully eliminated—fall way when looking at Article Influence

instead of impact factor. For example, Economics is a field with relatively
5The large jump in rank for NBER Macroeconomics Annual is largely due to the

difference in citation windows. This small but influential journal had a particularly good
year in 2001, which shows up in the 2005 Article Influence scores with their five year
window, but not in the 2005 impact factors with their two year window.
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Figure 2.2: Relative ranking differences under impact factor and Article
Influence. The left column are the top 35 Economics journals in the JCR
by impact factor. The right column lists the top 35 Economics journals by
Article Influence and their respective Article Influence Scores. The journals
in grey are journals that do not exist in both lists. The lines between the
two lists indicate changes in relative ranking. The data come from the 2005
JCR.
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short reference lists, long time lags between citations, and a large fraction

of preprints. As a result, there are no Economics journals in the top 400

journals ranked by impact factor. By contrast, when ranked by Article

Influence Score, there are thirty one Economics journals in the top 400

journals, with the leader, Quarterly Journal of Economics, checking in at

number 15 overall.

Another difference between impact factor and the Eigenfactor Metrics

is that the former counts citations over a two-year census window, whereas

the latter counts citations across a five year window6. This difference can

lift fields such as Mathematics and Ecology, in which it can take longer for

an article to begin to receive citations. Figure 2.3 provides an example, with

the bars illustrating the number of times that articles published in 2006 cite

articles published in the indicated years. The grey bars show the total num-

ber of 2006 citations received by journals in the field of Materials Science

in the years prior. The black bars show the total number of 2006 citations

received by journals in field of Horticulture. The bar chart illustrates the

lag time differences between fields. For Materials Science the peak number

of citations was two years previous. After 2004 citation totals drop signifi-

cantly. By contrast, horticulture citations peak in papers published in 2003,

and the drop off is less sharp. Thus compared to a two-year window, a five-

year window favors Horticulture relative to Materials Science. Differences

in timing have a considerable effect on the relative scores of journals in dif-

ferent fields, and this is why the time-window used for any citation-based
6As of February 2009, the Thomson-Reuters Journal Citation Reports introduced a

new impact factor based on a five-year window.
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Figure 2.3: Differences in citation timing between Materials Science and
Horticulture. Grey bars: citations from papers published in 2006 to Mate-
rials Science journals published in the indicated year. Black bars: citation
from papers publishing in 2006 to Horticulture journals published in the
indicated year.
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measure should be chosen carefully.

Another major difference between the standard impact factor measure

and the Eigenfactor Metrics is that the Eigenfactor Metrics do not include

self-citations7. This is done to minimize the opportunity and incentive for

journal editors and others to game the system by artfully placed self-citations

[4].8

2.4 Conclusion

Accounting for the origin of citations takes advantage the wealth of infor-

mation available in networks like the scholarly literature and the web. The

objective behind the Eigenfactor Metrics is to extract as much of this infor-

mation as possible in order to better evaluate an ever-expanding scholarly

library. The continued advances in network mathematics, the availability

of computational resources, the improvement in citation data collation and

the rising demand for scholarly evaluation has made it an exciting time to

be working in this field.

7Because we work with citations at the level of journals and not individual papers,
”self-citations” are between journals, not individual authors. In other words, a citation
from an author from Journal A to another author also from Journal A would be considered
a self-citation in our journal citation matrix.

8As of February 2009, the Thomson-Reuters Journal Citation Reports introduced a
new impact factor that omits self-citations.
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Abstract

The EigenfactorTM Metrics provide an alternative way of evaluating

scholarly journals based on an iterative ranking procedure analogous to

Google’s PageRank algorithm. These metrics have recently been adopted by

Thomson-Reuters and are listed alongside the Impact Factor in the Journal

Citation Reports. But do these metrics differ sufficiently so as to be a useful

addition to the bibliometric toolbox? Davis (2008) has argued otherwise,

based on his finding of a 0.95 correlation coefficient between Eigenfactor

score and Total Citations for a sample of journals in the field of medicine

[18]. This conclusion is mistaken; here we illustrate the basic statistical

fallacy to which Davis succumbed. We provide a complete analysis of the

2006 Journal Citation Reports and demonstrate that there are statistically

and economically significant differences between the information provided

by the Eigenfactor Metrics and that provided by Impact Factor and Total

Citations.
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3.1 Big Macs and Correlation Coefficients

One might think that if the correlation coefficient between two variables is

high, those variables convey the same information, and thus can be used

interchangably — but this line of reasoning is erroneous. A simple example

helps to illustrate. In Table 3.1, we provide two statistics for each of 22

countries: the cost of a Big Mac in local currency, and the mean hourly wage

in local currency. The Pearson product-moment correlation coefficient, ρ,

between these two statistics is 0.99. Since ρ is nearly 1, one might conclude

that we can use hourly wages to predict burger prices with high accuracy and

one might question why anyone should waste his or her time collecting burger

price information if the hourly wage rates are already known. But take a

look at the column “Real Wage”. The real wage — the ratio of burger prices

to hourly wages — is the variable of economic interest, since it measures a

worker’s purchasing power. We see that real wages differ dramatically across

countries. In Denmark, a worker making the mean hourly wage need only

work for seven minutes to earn a Big Mac, whereas in China, a worker

making the mean hourly wage must work for nearly two hours to afford a

burger.

In our hamburger example, it is pretty clear what is going on. The de-

nominations of currencies vary immensely and arbitrarily. It is indeed true

that differences in real wages are small relative to differences in currency

denominations. But it is not true that after correcting for differences in

denominations, differences in real wages are negligible. One way to think of

this is that the greatest part of the variation in hourly wage comes from the
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Country Burger Price Hourly Wage Real Wage

Denmark 24.75 211.13 8.53
Australia 3.00 19.86 6.62
New Zealand 3.60 21.94 6.09
Switzerland 6.30 37.85 6.01
United States 2.54 14.32 5.64
Britain/UK 1.99 11.15 5.60
Germany 2.61 14.32 5.49
Canada 3.33 16.78 5.04
Singapore 3.30 15.65 4.74
Sweden 24.00 110.90 4.62
Hong Kong 10.70 44.26 4.14
Spain 2.37 8.59 3.62
South Africa 9.70 30.86 3.18
France 2.82 8.50 3.01
Poland 5.90 11.80 2.00
Hungary 399.00 704.34 1.77
Czech Rep. 56.00 85.34 1.52
Brazil 3.60 4.58 1.27
South Korea 3000.00 3134.00 1.04
Mexico 21.90 17.61 0.80
Thailand 55.00 31.69 0.58
China 9.90 5.56 0.56

mean 166.01 207.32 3.72
std. dev. 638.49 670.63 2.29
std. dev./mean 3.85 3.23 0.62

Table 3.1: Hourly Wage versus Real Wage. Burger price and hourly wage
are in the local currency. Burger price is the average cost of a Big Mac.
The units for Real Wage are burgers per hour. Data comes from Behar’s
“Who earns the most hamburgers per hour?” [5]. The correlation coefficient
between burger price and hourly wage is ρ = 0.99.
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relatively unimportant fact that currency is denominated differently in dif-

ferent countries. The standard deviation of hourly wages in nominal terms

is about 300 times as large as that in real terms. Although the standard

deviation of real wages across countries is tiny compared to that of nominal

exchange rates, this variation is far more important for the quality of life

of workers. Thus, one would be wrong to conclude from the high correla-

tion coefficient that the real wage is constant across countries. Quite the

contrary; the standard deviation of this ratio is 62% of the mean.

3.2 Davis’s analysis

Davis (2008) fell into a similar trap in his recent comparison of journal

rankings by Eigenfactor score and by Impact Factor or Total Citations [18].

In that paper, Davis aimed to determine whether measures of “popularity”

such as Impact Factor and total citation differ substantially from measures

of ”prestige” such as the journal PageRank [12] and the Eigenfactor metrics

[6]1. To do so, Davis conducted a regression analysis of Eigenfactor scores
1The same issue was the subject of a more comprehensive analysis by Bollen and

colleagues in 2006 [12]. In that paper, Bollen and colleagues compare weighted PageRank
with Impact Factor and with Total Citations to explore differences between popularity
and prestige. Weighted PageRank and Eigenfactor are both variants of the PageRank
algorithm. See also Pinski and Narin (1976) for an early attempt at constructing prestige-
based measures using citation data, and Vigna (2009) for a discussion of how Pinski and
Narin’s measure differs from current approaches [46, 53].
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on Total Citations2 for a set of 165 medical journals3. Davis reports that the

correlation coefficient between 2006 Eigenfactor scores and Total Citations4

is ρ = 0.9493. Based on this result, Davis concluded that:

“At least for medical journals, it does not appear that iterative

weighting of journals based on citation counts results in rankings

that are significantly different from raw citation counts. Or,

stated another way, the concepts of popularity (as measured by

total citation counts) and prestige (as measured by a weighting

mechanism) appear to provide very similar information.”

But is Davis right? Is it really the case that if you know the number of

citations, you would be wasting your time by finding the Eigenfactor score?

Not at all.

First, Davis made a classic statistical error — cautioned against by Karl

Pearson in 1897 — in comparing two measures with a common factor [45].

Second, Davis suggests that a high correlation coefficient implies that there
2In his paper Davis also looked at the correlation coefficient between Eigenfactor and

Impact Factor scores. This ρ value is lower (ρ = 0.86), but the point is not so much
what this value is, but rather that the comparison makes little sense. Eigenfactor is a
measure of total citation impact, and should (all else equal) scale with the size of the
journal. Impact factor is a measure of citation impact per paper, and all else equal should
be independent of journal size. If one wants to compare an Eigenfactor metric with the
Impact Factor, one should use the Article Influence Score, which is a per-article measure
like Impact Factor. We explore this comparison later in the paper.

3Contrary to what is specified in that paper, Davis appears to have sampled from both
the “Medicine General and Internal” and “Medicine Research and Experimental” fields,
not merely the former category. In our analysis of the same subfields of medicine, we
included 168 journals (of the 171 journals in this field); we eliminated 3 journals because
they had an Impact Factor and/or Article Influence score of zero

4Davis appears to have used citations (from year 2006) to all articles published in
the journals he selected. A cleaner comparison, which would have resulted in a higher
correlation, would have been to extract citations (from year 2006) to articles published in
the past five years, since the Eigenfactor score takes into account only the past 5 years’
citations.
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is no significant difference between two alternative measures; this is simply

false. We address these issues in turn.

3.3 Journal Sizes and Spurious Correlations

There are enormous differences in the size of academic journals, and these

differences swamp the patterns that Davis was seeking in his analysis. The

JCR indexes journals that range in size from tiny (Astronomy and Astro-

physics Review has published 13 articles over the previous five years) to huge

(The Journal of Biological Chemistry has published 31,045 articles over the

same period) with a coefficient of variation, cv, equal to 1.910. Per-article

citation intensity varies less, whether measured by Article Influence or by

Impact Factor (AI: range 0–27.5, coefficient of variation= 1.785; IF: range

0–63.3, coefficient of variation= 1.548).

We can formalize these observations by decomposing Davis’ regression

of Eigenfactor on Total Citations. Davis regresses

Log(EFi) vs Log(CTi),

where EFi is the Eigenfactor score for journal i and CTi is the Total Cita-

tions received by journal i. We let AIi be the Article Influence for journal

i, and Ni,5 is the total number of articles published over the last five years

for journal i. Then by definition

log(EFi) = log(c1 ×AIi ×Ni,5)

= log c1 + logAIi + logNi,5,
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where c1 is a scaling constant that normalizes the Article Influence scores

so that the mean article in the JCR has an Article Influence score of 1.00.

Similarly, letting IFi be the Impact Factor for journal i,

log(CTi) ≈ log(c2 × IFi ×Ni,2)

≈ log(c2 c3 × IFi ×Ni,5)

= log c2 c3 + log IFi + logNi,5

where c2 and c3 are additional scaling constants. The scaling constant, c2,

accounts for the fact that Davis compared citations for all years and not just

citations for 2 years. The scaling constant c3 relates the number of articles

published in two years to the number of articles published in five years (and

thus is approximately 5/2). As a result, Davis is effectively calculating a

regression between

log(Article Influence) + log(Total Articles)

and

log(Impact Factor) + log(Total Articles).

Having the “log(Total Articles)” term on both sides of the regression —

especially given that it varies more than the other two terms — obscures

the relation between the variables that one would actually wish to observe
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when trying to evaluate the difference between “popularity” and “prestige”.

This pitfall is famous in the history in mathematical statistics. In 1897,

two years after pioneering statistician Karl Pearson developed the product-

moment correlation coefficient, he presented a paper to the Royal Society

in which he noted that fellow biometrician W. F. R. Weldon had made

precisely this mistake in the analysis of body dimensions of crustaceans

[45, 58]. Explaining this error, Pearson wrote

“If the ratio of two absolute measurements on the same or differ-

ent organs be taken it is convenient to term this ratio an index.

If u = f1(x, y) and v = f2(z, y) be two functions of the three vari-

ables x, y, z, and these variables be selected at random so that

there exists no correlation between x,y, y,z, or z,x, there will still

be found to exist correlation between u and v. Thus a real dan-

ger arises when a statistical biologist attributes the correlation

between two functions, like u and v to organic relationship.”

It was to describe this danger that Pearson coined the term spurious corre-

lation [45, 1]. He imagined a set of bones assembled at random. Based on

correlations between measurements that share a common factor, a biologist

could easily make the mistake of concluding that the bones were properly

assembled into their original skeletons:

“For example, a quantity of bones are taken from an ossuarium,

and are put together in groups, which are asserted to be those

of individual skeletons. To test this a biologist takes the triplet

femur, tibia, humerus, and seeks the correlation between the in-
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dices femur/humerus and tibia/humerus. He might reasonably

conclude that this correlation marked organic relationship, and

believe that the bones had really been put together substan-

tially in their individual grouping. As a matter of fact, since

the coefficients of variation for femur, tibia, and humerus are

approximately equal, there would be, as we shall see later, a cor-

relation of about 0.4 to 0.5 between these indices had the bones

been sorted absolutely at random. I term this a spurious or-

ganic correlation, or simply a spurious correlation. I understand

by this phrase the amount of correlation which would still exist

between the indices, were the absolute lengths on which they

depend distributed at random.”

The reason for this correlation will be that some of the random femur

and tibia pairs will be combined with a large humerus; in this case both the

femur/humerus and tibia/humerus ratio will tend to be smaller than average.

Other femur and tibia pairs will be combined with a small humerus; in this

case both the femur/humerus and tibia/humerus ratio will tend to be larger

than average. Correlation coefficients of the two ratios give the illusion that

tibia and femur length covary, even when they in fact do not. For his part,

Weldon was forced to concede that nearly 50% of the correlation he had

observed in body measurements was actually due to this effect.

Just over a decade later, another important figure in the development of

mathematical statics, G. U. Yule, noted that when absolute values share a

common factor, they are just as susceptible to this problem as are ”indices”
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or ratios [65]:

“Suppose we combine at random two indices z1 and z2, e.g. two

death-rates, and also combine at random with each pair a de-

nominator or population x3. The correlations between z1, z2,

and x3 will then be zero within the limits of sampling. But now

suppose we work out the total deaths x1 = z1x3 and x2 = z2x3;

the correlation r12 between x1 and x2 will not be zero, but pos-

itive.”

This is precisely the form of spurious correlation that arises in Davis’s

analysis. Per-article popularity as measured by Impact Factor takes the

role of z1 in Yule’s example, and per-article prestige as measured by Article

Influence score takes the role of z2. Total Articles takes the role of Yule’s

x3. Even if Impact Factor and Article Influence were entirely uncorrelated,

Davis still would have observed a high correlation coefficient in his regression

of Eigenfactor and Total Citations (∼ ρ = 0.6 for all journals), because both

share number of articles as a common factor. What Davis discovered is

not that popularity and prestige are the same thing; he discovered that big

journals are big and small journals are small. Because of this wide variation

in journal size, one would also observe a high correlation coefficient between

pages and total cites, though very few would argue that the former is an

adequate surrogate for the latter5.

To avoid this problem, we might want to look at the correlation between

popularity per article and prestige per article. That is, we need to look at
5We collected page and citation information for 149 Economics journals in 2006. The

correlation coefficient between total pages and total citations is ρ = 0.615.
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the comparison

Log(Article Influence) vs. Log(Impact Factor).

Since its inception in January 2007, Eigenfactor.org has provided exactly

this information at http://www.eigenfactor.org/correlation/, for the

entire JCR dataset and also for each individual field of scholarship as de-

fined by the JCR6. Figure 3.1 is a histogram of the correlation coefficients

between Impact Factor and Article Influence scores for all 231 categories in

the 2006 JCR. The mean for all fields was 0.853 with a standard deviation

of 0.099. The field with the lowest correlation coefficient is Communication

(ρ = 0.478). Marine Engineering has the highest correlation (ρ = 0.986).

The sample of medical journals that Davis selected, with ρ = 0.954, ranks in

the 90th percentile when compared to all 231 fields. Correlation coefficients

within fields typically exceed the correlation coefficient for all journals to-

gether. For all 7, 611 journals considered together, ρ = 0.818. This value

is lower than the mean of individual-field correlation coefficients, which is

ρ = 0.853.

3.4 Correlation and significant differences

To evaluate Davis’s claim that Eigenfactor score and Total Citations are

telling us the same thing, we can focus on the ratio of Eigenfactor score to

Total Citations (EF/TC). (When we look at the ratio, the common factor
6Falagas et. al (2008) presented a similar comparison of Impact Factor and the SJR

indicator (a per-article measure of prestige) [25]. Waltman and van Eck look at a corre-
lations among a number of bibliometric measures; their discussion of differences between
Impact Factor and Article Influence is noteworthy [56].
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Figure 3.1: Histogram of correlation coefficients between Impact Factor and
Article Influence scores. This includes all 231 categories in the 2006 Science
and Social Science JCR. The mean of all fields is 0.853 (intra-field mean) and
the standard deviation is 0.099. The correlation for all journals considered
together is 0.818. The correlation for the field of Medicine as studied by
Davis is 0.954. The correlation coefficients for all fields can be found at
http:/www.eigenfactor.org/correlation/.
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”Total Articles” divides out.) Notice that a journal’s EF/TC ratio is a

measure of “bang per cite received” – that is, how much Eigenfactor boost

does this journal receive, on average, when it is cited. In the hamburger

example, the corresponding notion is “burgers per hour,” the real wage or

purchasing power of an hour’s work. Does a high correlation between Total

Citations and Eigenfactor score mean that the bang per cite received is about

constant? If it is, there really would be no point to looking at Eigenfactor

scores instead of Total Citations. So let’s see what happens.

Figure 3.2 shows the ratio of Eigenfactor score to Total Citations for

every journal in the JCR, and the insert shows just the medical journals.

The standard deviation of this ratio is 1.1×10−5 and the mean is 1.56×10−5.

The standard deviation, in this case, is 71% of the mean. This is even more

variable than the Big Mac case! Moreover, there are nearly 1000 journals

with twice the mean “bang per cite”.

The thing to notice in both the Big Mac and the journal example is that

if you are interested in the ratio of A to B and if A = ax and B = bx

for some x with a very high variance relative to that of a and of b, you

will get a very high ρ value when you regress B on A. However, if what

really interests you is the ratio A/B, you will note that the x’s cancel and

A/B = ax/bx = a/b. Thus, the variance of x has literally nothing to tell

you about the variance of the ratio a/b. You don’t learn about whether a/b

is nearly constant or highly variable from looking at the correlation of B on

A.

If, as Davis claims, Eigenfactor scores do not differ significantly from

Total Citation counts, the ratio EF/TC should be constant across different
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Figure 3.2: Ratio of Eigenfactor score to Total Citations. Data are normal-
ized by the median ratio of the data set. The dashed line indicates a ratio
of one. The journals are ordered from those with the highest ratio to the
lowest. The inset shows only the 168 medical journals from Davis’s analysis.
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groups of journals. To evaluate this claim, we look at the EF/TC ratios of

social journals with those of science journals, with groupings determined by

whether a journal is listed in the Social Science JCR or the Science JCR.

(Journals listed in both are omitted from the analysis). The mean EF/TC

ratio for science journals is 1.42× 10−5, whereas the mean for social science

journals is 2.12× 10−5. A Mann-Whitney U test shows that this difference

is highly significant, at the p < 10−167 level.

These differences are not only statistically significant, but also econom-

ically relevant. The 49% difference in mean EF/TC ratios indicates that a

librarian who uses Total Citations to measure journal value will underesti-

mate the value of social science journals by 49% relative to a librarian who

uses Eigenfactor scores to measure value.

There are also significant differences within the sample of journals that

Davis considered. Based on the difference between science and social sci-

ence ratios described above, one might expect medical journals more closely

associated with the social sciences, such as those in public health, to have

higher-than-average EF/TC ratios. Seven of the publications in Davis’s

sample of medical journals are cross-listed in the JCR category of public,

environmental, and occupational health. Indeed, this group of journals has

a 29% higher EF/TC ratio than do the rest of the journals in Davis’s sample,

again statistically significant (Mann-Whitney U test, p < .01).

Note that there is nothing special about this particular comparison be-

tween sciences and social sciences; one could test any number of alternative

hypotheses and would find significant differences between EF/TC ratios for

many other comparisons as well.
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3.5 The value of visualization

So, if correlation coefficients are misleading, what is the alternative? First,

we argue for a deeper examination of the data. Figure 3.3 is an example of

this strategy7. Listing the journals in this way, one is able to quickly see

the ordinal differences that exist between this highly correlated data. This

type of graphical display illustrates the interesting stories that can be lost

behind a summary statistic such as the Spearman correlation.

Figure 3.3 illustrates the ordinal ranks of the top 50% of the medical

journals used in Davis’s study. In the left column, the journals in this

subfield of medicine are ranked by the total number of citations. In the right

column, the journals are ordered by Eigenfactor score. The lines connecting

the journals indicate whether the journal moved up (green), down (red) or

stayed the same (black) relative to their ranking by Total Citations. The

figure highlights the differences between the metrics. For example, Aviation

Space and Environmental Medicine drops 30 places while PLoS Medicine

raises 31 places. Davis claims in his paper that the ordering of journals does

not change drastically. Figure 3.3 suggests otherwise.

Figure 3.4 compares the ordinal ranking by Impact Factor and Article

Influence for 84 journals — the top-ranked half — from Davis’s study8.
7Figure 3.3 caption: Journal ranking comparisons by Total Citations and Eigenfactor

score. The journals listed are the top 50% from the field of Medicine that Davis analyzed.
Journals in the left column are ranked by Total Citations for all years. Journals in the
right column are ranked by Eigenfactor score. The lines connecting the journals indicate
whether the journal moved up (green), down (red) or stayed the same (black) relative to
their ranking by Total Citations. Journal names in black can also be journals that do not
exist in both columns.

8Figure 3.4 caption: Comparing Impact Factor and Article Influence. The journals
shown are from the same field that Davis analyzed (because of limited space, only the top
84 journals are shown). For these 84 journals, the correlation coefficient between IF and
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Figure 3.3: See footnote in text for caption.
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Changes in ranking are even more dramatic when we look at the lower-

ranked 84 journals. The correlation coefficient between Impact Factor and

Article Influence for these 84 journals is ρ = 0.955. Despite this high corre-

lation, the figure highlights the fact that the two metrics yield substantially

different ordinal rankings.

Figure 3.4 reveals that the top few journals change in rank less than

those further down the hierarchy. For example, going from Impact Factor

to Article Influence, the journals in the top ten change in rank by only 1 or

2 positions. By contrast, there are many larger changes further on in the

rankings9. For example, as we go from Impact Factor to Article Influence,

the Journal of General Inernal Medicine rises 18 spots to number 19 while

Pain Medicine drops 35 spots to end up at number 80. These are just two

of the many major shifts (in a field with a correlation of 0.955!). These

changes in relative ranking would certainly not go unnoticed by editors or

publishers.

Furthermore, while ordinal changes are interesting, cardinal changes are

often more important. Figure 3.5 shows the top ten journals from Figure 3.3

— those with the least ordinal change from one metric to another — now in

their cardinal positions. Even those journals that do not change ordinal rank

AI is ρ = 0.955. The relative rankings by Impact Factor and Article Influence are listed
in the left and right column, respectively. The third column lists the Article Influence
scores. The journal names in green indicate those that fare better when ranked by Article
Influence; the journal names in red fare better when ranked by Impact Factor. The names
in black are journals that exhibit no change or exist outside the range of the journals
shown.

9Bollen (2006) observed a similar pattern in a series of scatterplots contrasting PageR-
ank and Impact Factor values for all journals [12]. In these scatterplots the rankings of
top-tier journals differ relatively little whereas more variation is found in the middle and
bottom portions of the hierarchy.
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Figure 3.4: See footnote in text for caption.
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from one metric to another may be valued very differently under the two

different metrics. For example, Nature Medicine is the #2 journal regardless

of whether one uses Impact Factor or Article Influence. But under Impact

Factor, it has barely half the prestige of the first-place New England Journal

of Medicine, whereas by Article Influence it makes up a good deal of that

ground.

3.6 Conclusion

Correlation coefficients can be useful statistical tools. They can help us

identify some kinds of statistically significant relationships between pairs of

variables, and they can tell us about the sign (positive or negative) of these

relationships. One must use considerably greater caution, however, when

drawing conclusions from the magnitude of correlation coefficients — all the

more so in the presence of spurious correlates and in the absence of a formal

hypothesis-testing framework. In particular, we have illustrated that just

because two metrics have a high correlation — 0.8 or 0.9 or even higher —-

we cannot safely conclude that they convey the same information, or that

one has little additional information to tell us beyond what we learn from

the other.

Comparative studies of alternative measures can be very useful in choos-

ing an appropriate bibliometric toolkit. We close with a few suggestions

for how one might better conduct these sorts of analyses. First, be wary of

what correlation coefficients say about the relationship of two metrics [52, 3].

High correlation does not necessarily mean that two variables provide the
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Impact Factor Article Influence

NEW ENGL J MED51.296

NAT MED28.588
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Figure 3.5: Cardinal differences between Impact Factor and Article Influence
score. The top ten journals by Impact Factor are shown in the left column.
The scores are scaled vertically, reflecting their cardinal positions. The
smallest Impact Factor score is on the bottom, and the highest Impact
Factor score is on the top. The right column shows the same journals scaled
by Article Influence.
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same information any more than a low correlation means that two variables

are unrelated. Purchasing power varies wildly despite the high correlation

between wage and hamburger price in our Big Mac example. At the other

end of the spectrum, in the chaotic region of the logistic map, successive

iterates have an immediate algebraic relationship yet a correlation of zero.

Second, appropriate data visualization can bring out facets of the data

that are obscured by summary statistics. Different forms of data graphics

can be better suited for certain tasks; for example the comparison plots such

as those in Figure 3.4 better highlight the differences between bibliometric

measures than do standard scatter plots.

Finally, simple observations can be at least as powerful as rote statisti-

cal calculations in understanding the nature of our data. For example, the

median of the burgers/hour in the top third of the countries is about five

times the median of the burgers/hour in the bottom third. This says a great

deal about the differences in purchasing power across countries. The median

“bang per cite received” in the top third of journals is almost 2.4 times of

the median in the bottom third. This says a great deal about the difference

in how journals are valued under the Eigenfactor metrics, and helps us un-

derstand why the Eigenfactor metrics offer a substantially different view of

journal prestige than that which we get from straight citation counts.
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business, law and humanities. More information can be found at http:

//www.ssrn.com/.

Note: SSRN provides rankings for authors and institutions based on cita-

tions and downloads. A complete list of the rankings can be found at http:

//hq.ssrn.com/Rankings/Ranking_Display.cfm?TRN_gID=7. These rank-

ings are preliminary and incomplete (05/27/10). Citations to and from legal schol-

ars are substantially undercounted until CiteReader1 has completed the extraction

of references in footnotes in legal papers in the SSRN eLibrary. These rankings will

change as the task is completed.

1A description of CiteReader is available at http://ssrn.com/abstract=996660 [17].
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Abstract

The Social Science Research Network (SSRN) is a pre- and post-print

archive devoted to the rapid dissemination of scholarly research in the social

sciences and humanities. Here we describe the application of the Eigenfactor

Metrics to author-level citation data2 from more than 237,382 papers in the

SSRN collection3, to generate author, institution, and country rankings for

the contributors to the SSRN4.

Keywords: Eigenfactor Metrics, Author-Level Eigenfactor Score, SSRN, Au-

thor Rankings, Institutional Rankings, Citation Networks

2Care was taken in this study to protect all authors’ personal information. Only
citation, article, institutional and download information were extracted from papers by
SSRN authors.

3Citation data for this paper is based on SSRN CiteReader statistics as of May 27,
2010.

4There are over 50,000 papers — primarily law papers — in the SSRN that have no
formal bibliography. We did not include these in the analysis for this version of the paper,
but as the citations from the footnotes in these papers are extracted by CiteReader, they
will be included in the rankings and in future versions of this paper. We acknowledge that
omitting these papers creates a substantial bias in the statistics that we report.
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4.1 Introduction

Since 1927, when two chemistry professors proposed using citation counts to

make subscription decisions for university libraries [30], citation tallies have

been used to estimate the academic influence and prestige of articles [55], au-

thors [31], journals [26], departments [33], universities [38], and even nations

[40]. But citations are not independent and isolated events. Rather, they

form a network of interrelations among scholarly articles. The structure of

this network reflects millions of individual decisions by academic researchers

about which papers are most important and relevant to their own work. In

our efforts to extract the wealth of information from this network of cita-

tions, we can do better than simply tallying the raw number of citations:

we can explicitly use information about the network structure in order to

reveal the importance of each node (paper, author, journal or institution)

within the citation network as a whole.

In this paper, we develop an Author-Level EigenfactorTM Score as a

network-based measure of an author’s influence within the Social Science

Research Network (SSRN). At the time the data for this paper was extracted

from SSRN, this scholarly community consisted of 86,170 authors who either

cited or received citations from other SSRN authors. We then use Author-

Level Eigenfactor Scores to rank institutions and countries associated with

this set of scholars.
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4.2 Methods

4.2.1 The Citation Network

There are 237,382 papers that have been submitted to the SSRN archive,

representing 136,348 unique authors (as of 05/27/10). For each paper, we

extract the authors and their primary institutional affiliations, and the works

cited in the article’s references and footnotes. This includes over 5.9 million

citations. These references in each paper in the SSRN database can then

be used to create large networks where the links represent citations to other

SSRN papers or from other SSRN papers; the nodes can represent either

papers, authors or institutions. For this paper, the nodes are authors and

the links are citations between authors.

The SSRN network that we examined for the analysis in this paper was

a subset of the total number of authors. For an author to be included in

the network, it had to either be cited by another SSRN author and/or cite

another SSRN author. This network consisted of 5,946 institutions, 86,170

authors, 171,904 papers and over 2.4 million citations (05/11/10). Note the

hierarchical structure of the data: authors are affiliated with one or more

institutions; papers are affiliated with one or more authors; citations are

directed among papers. To illustrate this basic structure, Figure 4.1 shows

a hypothetical example for a much smaller citation network with 10 authors,

8 papers and 3 institutions. The colored ellipses represent institutions, the

numbers are individual authors and the rectangles labeled with letters are

papers. The paper, author and institution relationships are combined in this

figure, but they can be disaggregated to show only the papers (Figure 4.2),
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authors (Figure 4.3) or institutions. In this paper, we compute rankings

based on the author-level network.

4.2.2 Eigenfactor Scores

The EigenfactorTM Algorithm provides a methodology for determining which

nodes in a citation network are the most important or influential. The algo-

rithm does this by computing a modified form of the eigenvector centrality

of each node in the network [16]. The intuition behind eigenvector central-

ity is that important nodes are those which have links to other important

nodes; while this may sound circular, importance scores can be calculated

recursively according to this principle. While we apply this approach to ci-

tation networks, there are many other applications. For example, this basic

concept is at the heart of Google’s PageRank algorithm [42].

The Eigenfactor scores can be seen as the outcome of either of two con-

ceptually different but mathematically equivalent stochastic processes5. The

first process is a simple model of research in which a hypothetical reader fol-

lows chains of citations as she moves from node to node. Imagine that a

researcher goes to the SSRN and selects an article at random. After (option-

ally) reading the article, the researcher selects at random one of the citations

from the article. She then proceeds to that citation, and now downloads it

from the SSRN. The researcher repeats this process ad infinitum. Eventu-

ally, her download patterns reach a steady state6. An author’s Eigenfactor
5See ”rate view” at http://www.mapequation.org/mapdemo/index.html for a demo of

this process
6So long as the citation matrix is irreducible and aperiodic; we ensure these via the

”teleportation” procedure discussed below.
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Figure 4.1: An example citation network among authors, papers and institu-
tions. The large colored ellipses represent institutions. The white rectangles
(labeled with letters) within each ellipse represent papers. The numbers
within the rectangles represent individual authors. Many of the papers are
multi-authored. For example, paper C has three authors (2,4,5 ). Authors
are affiliated with the institution in which a given paper is located, unless
indicated otherwise by coloration. For example, Author 1 is associated with
the brown institution even though paper H appears in the blue ellipse. The
arrows represent citations. There are 10 citations, 8 papers, 10 authors and
3 institutions in this citation network.
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Figure 4.2: Paper citation network corresponding to Figure 4.1. Just as
in that figure, the rectangles represent papers and the arrows represent
citations among those papers. Paper F is the oldest paper in the example
and paper H is the most recent paper written. Many of the papers cite
multiple other papers but only cite backwards in time. Because of this time
constraint, paper F cites no papers in this network and paper H receives no
citations. Therefore, older papers in this type of network typically receive
larger number of citations than newer papers.

score is the percentage of the time that she spends with this author’s work

in her random walk through the literature.

The second, equivalent, process is an iterated voting procedure. Each

author begins with a single vote and passes it on, dividing the vote equally

among those authors whom she cites. After one round of this procedure,

some authors will receive more votes than others. In the second round, each

author passes on her current vote total, as received in the previous round,

again dividing this quantity equally among those authors whom she cites.

This process is iterated indefinitely. Eventually, we reach a steady state in
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which each author receives an unchanging number of votes in each round7.

An author’s Eigenfactor score is the percentage of the total votes that she

receives at this steady state.

7

9

10
6

5
4

2

8

3

1

Figure 4.3: Author citation network corresponding to Figure 4.1. The circles
represent authors and the arrows represent citations among the authors. The
weight of each directed arrow indicates the relative fraction of citations from
the source author to the recipient author. For example, the citation weight
from author 9 to author 8 is twice the weight of that from author 10 to
author 8. This is because author 9 cites only author 8 whereas author 10
cites multiple authors.

Eigenfactor Scores have previously been used to rank scholarly journals

[6, 62], and the scores are freely available at http://www.eigenfactor.org.

Here we extend the Eigenfactor Algorithm to the author level, and apply

it to the SSRN database. The SSRN data tallies the number of times that

each paper in the SSRN database has been cited by each other paper in
7Again we require irreducibility and aperiodicity.
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the SSRN database since the inception of the database. From this data we

can construct an author citation network—a directed network in which each

author is a node and a weighted, directed edge connects author 1 to author

2 if any paper by author 1 cites any paper by author 2.

4.2.3 Creating the weighted cross-citation matrix

From the citation database developed by SSRN, we begin by extracting

those citations from SSRN papers that reference other SSRN papers8. At

the time of the analysis, this set of papers features 86,170 unique authors.

From these authors and citations, we create a 86,170 by 86,170 square cross-

citation matrix R that tallies the raw number of times that the SSRN papers

of each author cite the SSRN papers of each other author, where

Rij = citations from author j to author i. (4.1)

When constructing R, we omit all self-citations by setting the values along

the diagonal of this matrix to zero. We ignore self-citations in order to

minimize the incentive for opportunistic self-citation. In the data used for

this analysis, there were 21,564 authors who cited at least one of their own

SSRN papers (25% of all authors)9. Those citations consisted of 5.4% of all

the weighted citations before their removal.
8At present, SSRN records only those citations listed in the references. Thus, we have

missed citations from legal scholars, who often include citations in footnotes. SSRN is in
the process of tallying these footnote citations. These citations will increase the number
of citations by approximately 75% and will disproportionately affect law authors.

9There were (94) authors that (1) only cited themselves and no other authors in the
SSRN and (2) only received citations from themselves. This indicates that they did not
co-author any of their self-cited papers with any other SSRN authors.
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Before we calculate Eigenfactor Scores, the citation matrix R must be

normalized to divide credit among authors of multiple-authored papers and

to scale by the number of outgoing citations from each paper. We treat

these steps in turn.

Dividing credit by the number of authors. The number of authors on

a scholarly paper varies widely both within and between fields. As de Solla

Price notes [20], if every author on a paper were to receive full credit for

each citation that the paper received, this would cause some papers (namely

those with many authors) to be counted multiple times in the bibliometric

tally, whereas others (solo-authored papers) would be counted only once.

Similarly, authors who tend to work as parts of large teams would be cor-

respondingly overvalued. Such factors can have a major influence on both

cardinal and ordinal rankings [22, 29].

We follow de Solla Price’s proposed solution: the credit for a paper “must

be divided among all the authors listed on the byline, and in the absence

of evidence to the contrary it must be divided equally among them. Thus,

each author of a three-author paper gets credit for one-third of a publication

and one-third of the ensuing citations.” [20].

Dividing credit by the number of outgoing citations. Papers also

vary widely in the number of outgoing citations that they confer upon other

articles. In order to correct for these differences, in our choice of weights

we divide each citation by the number of outgoing citations that each paper

confers, such that each paper contributes a total citation weight of 1.0 that

is shared among all of the papers that it cites.
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Assigning credit across multiple versions of a paper. Pre-print

archives such as SSRN tend to house multiple versions of the same paper. It

is not unusual for each one of these versions to receive unique citations and

the final published paper may receive only a modest fraction of the total

citations received by all versions. Thus instead of counting citations only

to the final version of a paper, and also to avoid having to assign a unique

paper identifier to every new version of the same paper, SSRN groups all

variants of the same paper together into a ”version group,” and tallies the

total number of citations to all versions of the version group. We do this for

the citing paper and the cited paper.

Computing the weighted citation matrix. Assume that authors have

unique identifiers {1, 2, . . . ...nauthors}. From the raw citation matrix R,

we construct a weighted cross-citation matrix Z such that Zij gives us the

weighted number of times that author j has cited author i.

Per the discussion above, the weights are determined as follows. Take a

paper X with m authors x1, x2, . . . , xm that cites a paper Y with n authors

y1, y2, . . . , yn. Let c(X) be the number of citations in the bibliography of

paper X. Then this citation from paper X to paper Y contributes weights

ω =
1

c(X)
1
m

1
n

(4.2)

for each author j of paper X to each author i in paper Y . The entry Zij

is the sum of all weights as calculated above for all citations from author j

to author i. And if the paper has multiple versions, the above refers to the
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version group, not any individual paper in the group.

4.2.4 Calculating Eigenfactor Scores for Authors

The Eigenfactor Algorithm models a random walk on the author citation

network. This random walk is described by the column-stochastic form of

the weighted citation matrix Z. Thus to calculate Eigenfactor Scores, we

first normalize Z by the column sums (i.e., by the total number of outgoing

citations from each author) to create a column-stochastic matrix M, which

can be written as

Mij =
Zij∑
k Zkj

(4.3)

Following Google’s PageRank approach [42, 36], we define a new stochas-

tic matrix P as follows:

P = αM + (1− α)A, (4.4)

where

A = a.eT , (4.5)

where a is a column vector such that ai = (number of articles by author i)

/ (number of total articles written by all authors in the database) and eT is

a row vector of 1’s.
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Under our stochastic process interpretation, the matrix M corresponds

to a random walk on the citation network, and the matrix P corresponds to

a Markov process, which with probability α follows a random walk on the

author citation network and with probability (1−α) “teleports” to a random

author, proportional to the number of articles published by each author. We

teleport to an author with probability proportional to the number of articles

(version groups) written by that author in order to avoid over-inflating the

influence of authors with small numbers of articles and under-inflating the

influence of authors with large number of articles (version groups). We define

the weight of each author as the leading eigenvector of P. We compute the

leading eigenvector of the matrix P (with teleportation) rather than using

the leading eigenvector of M (without teleportation) for two reasons:

1. The stochastic matrix M may be non-irreducible or periodic. Adding

the teleport probability 1 − α ensures that P is both irreducible and

aperiodic, and therefore has a unique leading eigenvector by the Perron-

Frobenius Theorem [39].

2. Even if the network is irreducible without teleporting, rankings can be

unreliable and highly volatile when some components are extremely

sparsely connected. Teleporting keeps the system from getting trapped

in small nearly-dangling clusters by reducing the expected duration of

a stay in these small cliques.

However, the teleportation procedure introduces a small but systematic

bias in favor of rarely-cited authors, because these authors are visited oc-

casionally by teleportation. The Eigenfactor Algorithm corrects for this
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directly. Our final author rankings will not be given by the author eigen-

vector f but rather by the product of M.f . Note that as the teleportation

frequency α vanishes, M.f converges to f . We define the Author-Level Eigen-

factor Score wi of author i as the percentage of the total weighted citations

that author i receives from our 86,170 source authors. We can write the

vector of Author-level Eigenfactor scores as

w =
100 M f
eT M f

. (4.6)

4.2.5 Institutional Rankings

The Eigenfactor score w is an additive metric. To find the Eigenfactor of

a group of authors, simply sum the Eigenfactor scores of the authors in the

group. Thus, it is straightforward to use the author-level Eigenfactor scores

to rank various departments, universities, or other institutions. By this

approach, the Eigenfactor score assigned to an institution Ij is simply the

sum Ij =
∑

k wk, where wk is the author-level Eigenfactor score of author k

associated with institution Ij .

Notice that the Eigenfactor score computed in this way is not the same

as what one would get by operating directly on the institution-level cross-

citation matrix. Aggregating up to the institution level, and computing

Eigenfactor scores based on an institution-by-institution cross citation ma-

trix imputes uniform weights to the authors within the institution. If, for

example, the most highly regarded authors are more likely to cite within the
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institution, the institution-level aggregation will make it appear as though

in-citations are less common than is the actually case under the author-level

model.

4.3 Results

4.3.1 Author Rankings

The Eigenfactor Algorithm was independently coded by the Eigenfactor

team and the SSRN team in two different programming languages in order

to insure accuracy of the results.

There were 86,170 authors ranked by Eigenfactor Scores. The top twenty

authors and their institution affiliations are shown in Table 4.1. When

summed together, the top twenty authors accounted for 6.8% of the total

Eigenfactor Score for all authors. The mean Eigenfactor Score for all 86,170

authors is 0.0012 with a standard deviation of 0.0088. The author-level

Eigenfactor scores can be interpreted in the following way: if one were to

randomly follow citations in the SSRN database for a very long time, 0.752%

of the time would be spent at literature contributed by Andrei Shleifer and

his co-authors (see Methods for alternate explanations). That is a significant

proportion, given the 86,170 authors in this citation network.

Columns four, five and six indicate the total citation weight given to

other SSRN authors, the total citation weight received from other SSRN

authors and the number of papers authored or co-authored by each author,

respectively (CTo = Out Citations, CTi = In Citations, Art = Articles Writ-

ten). The numbers in these three columns are not integer-valued because of
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Table 4.1: The top 20 authors of 86,170 authors ranked by their Author-
Level Eigenfactor Scores in the SSRN. A complete list for the top 10,000
authors on SSRN can be found at SSRN.com. EF = Eigenfactor, CTo =
Out Citations, CTi = In Citations, Art = Articles Written. Note: These
rankings are preliminary and incomplete (05/27/10). Citations to and from legal
scholars are substantially undercounted until CiteReader has completed the extrac-
tion of references in footnotes in legal papers in the SSRN eLibrary. These rankings
will change as the task is completed.

Author EF CTo CTi Art. Institution
1 Shleifer, Andrei 0.752 16.2 298.5 74.6 Harvard University
2 Jensen, Michael C. 0.513 5.7 210.9 77.8 Harvard University
3 Campbell, John Y. 0.440 12.9 165.4 58.3 Harvard University
4 Vishny, Robert W. 0.404 1.7 167.0 17.6 University of Chicago
5 Acemoglu, Daron 0.340 17.1 127.0 87.2 MIT
6 Shavell, Steven 0.336 7.4 127.8 86.7 Harvard University
7 Rajan, Raghuram G. 0.328 14.3 137.9 47.0 University of Chicago
8 La Porta, Rafael 0.327 4.2 139.7 17.7 Dartmouth College
9 Glaeser, Edward L. 0.325 22.6 94.7 94.1 Harvard University
10 Zingales, Luigi 0.310 15.2 144.0 59.0 University of Chicago
11 Heckman, James J. 0.309 8.0 81.6 83.8 University of Chicago
12 Lopez de Silanes, F. 0.300 5.1 124.6 22.4 EDHEC Business School
13 Stein, Jeremy C. 0.274 8.4 104.6 40.1 Harvard University
14 Levine, Ross 0.271 20.8 134.1 47.8 Brown University
15 Harvey, Campbell R. 0.263 19.3 132.5 55.4 Duke University
16 Cochrane, John H. 0.259 8.0 95.7 47.2 University of Chicago
17 Hall, Robert E. 0.258 8.2 72.0 48.9 Stanford University
18 Krueger, Alan B. 0.257 2.7 67.4 55.0 Princeton University
19 Svensson, Lars E.O. 0.246 12.4 107.7 80.8 Sveriges Riksbank
20 Fama, Eugene F. 0.245 8.3 90.5 22.7 University of Chicago

the way citation and article credit are divided among multi-authored papers

(see Methods, Equation 4.2).

The cumulative distribution of Eigenfactor Scores for the top 10,000

authors is shown in Figure 4.4. The authors are ordered on the x-axis from

highest ranked to lowest ranked (i.e., author 100 was the author that ranked

100th by Eigenfactor Score). The dashed lines indicate the authors at which

50% and 80% of the total Eigenfactor Score is attained. The top 736 authors

account for 50% of the Eigenfactor Score, and the top 3,897 authors account
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for 80% of the Eigenfactor Score. The top 25 authors account for 7.9% of

the Eigenfactor Score (not shown in figure).

The Eigenfactor Score can be viewed as a form of weighted citation count

where the weights reflect the prestige of the citing documents. Therefore,

one would expect the Eigenfactor Scores to correlate with other weighted

citation counts. Figure 4.5 shows a log-log plot of Eigenfactor Scores versus

the total citation weight Ω for each author. We calculate total citation

weight by simply tallying citations, and weighing each author’s fractional

share as we have done for the Eigenfactor scores, as given in Equation 4.2.

Each author i receives citation weight ω from author j. Therefore, the total

citation weight for author i is

Ωi =
∑
j

wj (4.7)

Table 4.2 lists the top 20 authors by this criteria:

The red line in Figure 4.5 is a best fit linear regression line on the log

data. Despite the correlation (ρ = 0.89), an Eigenfactor score near the

middle portion of the distribution could be associated with a three-order of

magnitude range of citation weights. The converse is even more extreme.

These differences result in very different ordinal rankings based on the two

different criteria of either ranking by citations or ranking by Eigenfactor.

4.3.2 Network Sparseness

Author citation networks are typically very sparsely connected (i.e., the

cross-citation network has many zero entries). However, there are well-
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Figure 4.4: Cumulative Distribution of Eigenfactor Score. The figure shows
the fraction of the total Eigenfactor accounted for by the first 10,000 authors
out of 86,170 total authors. The x-axis lists the author rankings (i.e., author
500 is the 500th highest-ranked author ranked by Eigenfactor). The y-axis is
the cummulative Eigenfactor Score. The dashed vertical lines indicate how
many authors account for 50% of the total Eigenfactor Score and 80% of the
Eigenfactor Score. The 50% line crosses the x-axis at the author ranked 736
and the 80% line crosses the x-axis at the author ranked 3,897. The top 20
authors account for nearly 7.9% of the total Eigenfactor Score (not shown).
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Table 4.2: The top 20 authors of 86,170 authors ranked by their total incom-
ing citation weight. CTi = In Citations. Note: These rankings are preliminary
and incomplete (05/27/10). Citations to and from legal scholars are substantially
undercounted until CiteReader has completed the extraction of references in foot-
notes in legal papers in the SSRN eLibrary. These rankings will change as the task
is completed.

Author CTi Institution
1 Shleifer, Andrei 298.5 Harvard University
2 Jensen, Michael C. 210.9 Harvard University
3 Vishny, Robert W. 167.0 University of Chicago
4 Campbell, John Y. 165.4 Harvard University
5 Zingales, Luigi 144.0 University of Chicago
6 La Porta, Rafael 139.7 Dartmouth College
7 Rajan, Raghuram G. 137.9 University of Chicago
8 Levine, Ross 134.1 Brown University
9 Harvey, Campbell R. 132.5 Duke University
10 Shavell, Steven 127.8 Harvard University
11 Acemoglu, Daron 127.0 MIT
12 Lopez de Silanes, Florencio 124.6 EDHEC Business School
13 Svensson, Lars E.O. 107.7 Sveriges Riksbank
14 Stein, Jeremy C. 104.6 Harvard University
15 Cochrane, John H. 95.7 University of Chicago
16 Stulz, Rene M. 95.4 Ohio State University (OSU)
17 Glaeser, Edward L. 94.7 Harvard University
18 Helpman, Elhanan 93.4 Harvard University
19 Fama, Eugene F. 90.5 University of Chicago
20 Gali, Jordi 90.1 Universitat Pompeu Fabra
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Figure 4.5: Relationship between Eigenfactor Score and total citation
weight. The x-axis is the Eigenfactor Score. The y-axis is the total citation
weight Ω for each author. The linear regression (dashed line) of log cita-
tion weight a on log Eigenfactor score b is given by the following equation:
a = 0.776b+ 1.904. (ρ = 0.89)
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connected authors that cite a relatively large portion of all the other au-

thors in the database10. One contributor, Iftekhar Hasan, cited 1,066 unique

SSRN authors. Figure 4.6 illustrates this network sparseness. For the 70,582

authors that cited at least one author in the SSRN (not counting self cita-

tions), we counted the number of unique authors cited. The log distribution

of this tally is shown in Figure 4.6. There are 79,342 authors (92.1% of all

authors) that cite fewer than 100 other different SSRN authors.

Figure 4.7 illustrates the converse; it shows the number of unique SSRN

authors citing each author in the database. It addresses the question of

which authors receive citations from the largest audience? For example,

Andrei Schleifer has received citations from 9,298 different authors. The

mean number is 38.3, slightly higher11 than in Figure 4.7. The distribution

is shifted to the left, and the standard deviation is much higher (150.9).

Most authors receive citations from relatively few other authors. However,

there are authors that receive citations from a significantly large portion of

the SSRN author base. Another way to think about it is that 10.8% of all

authors in the SSRN community have cited Schleifer. This speaks to the

centrality of Schleifer in this particular community. Table 4.3 lists the top

twenty authors by this metric.

Many authors either received no citations or gave out no citations —
10It should be noted here that this is not total citations given out by an author but the

unique number of authors cited. Therefore, these tallies are independent of the number
of papers and citations, although an author with a large number of papers and citations
would more likely cite a large number of unique authors.

11Because of the conservation of total citations, the means in Figure 4.6 and Figure 4.7
are the same (31.3). They are reported differently in the text because for these figures
authors that give out zero citations and received zero citations are removed, respectively.
This is also why the means for these figures are both higher than 31.3.
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Figure 4.6: Unique Authors Cited. The histogram shows the number of
different authors cited by each individual author in the SSRN. The 15,588
authors that cited zero authors (but received citations) are not shown. Most
authors cite fewer than 100 different authors. The mean number of authors
cited is 38.3 with a standard deviation of 62.0. The network schematic shows
the direction of citations being tallied in this figure.

70



Log (unique authors citing)

Fr
eq
ue
nc
y

0 1 2 3 4

0
20
00

40
00

60
00

80
00

10
00
0

A

Figure 4.7: Unique Citing Authors. The histogram above is the converse of
Figure 4.6. It shows the frequency of different authors citing one individual
author (see the network schematic in the figure which shows the direction of
citations tallied). Only the 61,173 authors receiving at least one citation are
shown. The mean number of unique citing authors is 44.1 and the standard
deviation is 170.2.
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Table 4.3: The top 20 authors cited by the largest number of unique authors.
This table enumerates the members of the right-hand tail in Figure 4.7. Note:
These rankings are preliminary and incomplete (05/27/10). Citations to and from
legal scholars are substantially undercounted until CiteReader has completed the
extraction of references in footnotes in legal papers in the SSRN eLibrary. These
rankings will change as the task is completed.

Author Unique Authors Institution
1 Shleifer, Andrei 9,298 Harvard University
2 Jensen, Michael C. 7,524 Harvard University
3 Vishny, Robert W. 7,395 University of Chicago
4 La Porta, Rafael 5,196 Dartmouth College
5 Fama, Eugene F. 5,084 University of Chicago
6 Lopez de Silanes, Florencio 5,002 EDHEC Bus. School
7 Zingales, Luigi 4,396 University of Chicago
8 Rajan, Raghuram G. 4,375 University of Chicago
9 Meckling, William H. 4,357 University of Rochester
10 Campbell, John Y. 4,354 Harvard University
11 Stulz, Rene M. 3,999 Ohio State University
12 Barro, Robert J. 3,951 Harvard University
13 Stein, Jeremy C. 3,839 Harvard University
14 Harvey, Campbell R. 3,697 Duke University
15 Stock, James H. 3,524 Harvard University
16 Blanchard, Olivier J. 3,519 MIT
17 Poterba, James M. 3,491 MIT
18 Levine, Ross 3,474 Brown University
19 Acemoglu, Daron 3,440 MIT
20 French, Kenneth R. 3,399 Dartmouth College

or both. There were 15,588 authors that received citations but gave out

no citations. These authors in a citation network are known as dangling

nodes. Conversely, there were 24,997 authors that gave out citations but

received no citations. There were no authors that both gave out zero cita-

tions and received zero citations; these authors were eliminated before the

86,170 x 86,170 matrix was created. Also, authors with zero articles were

eliminated before the construction of the adjacency matrix or authors that

have abstracts but no full text documents in the SSRN eLibrary.
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4.3.3 Ranking Institutions

Thousands of institutions from around the world are represented in the

SSRN database. Most of these institutions are universities or university

departments, but there are other types of institutions such as aggregators

(e.g., NBER, CEPR, ECGI, IZA, and CESifo)12. Using the author-level

Eigenfactor Scores, these universities and departments can be ranked. This

analysis was performed on 5,946 different institutions. Table 4.4 lists the

top twenty institutions by Eigenfactor Score.

Just as universities can be ranked with this method, so can countries.

There are 127 countries represented in the SSRN. The top twenty can be

found in Table 4.5. The United States carries 77% of the total Eigenfactor

for all countries. As with author rankings, it is important to understand

this is a measure of centrality to the SSRN rather than a measure of the

relative overall productivity of researchers in various countries.

4.3.4 Usage vs citations

Citation counts are not the only way to assess the quality or impact of

scholarly work, and indeed they may systematically undervalue certain pa-

pers that are widely read by authors, students or practitioners but less often

cited in the subsequent research literature[14]. In addition to tracking cita-

tions, SSRN has collected usage data as well, tracking every single download

of every single paper in the archive since the archive’s inception. We can use
12Because these organizations do not employ the authors whose papers they aggregate,

we do not compare them directly to institutions like universities and other research in-
stitutions that do employ the authors that are affiliated with these aggregator research
institutions.
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Table 4.4: The top 20 research universities and other academic institutions
ranked by SSRN authors. There were 5,946 institutions ranked. A com-
plete list can be found at SSRN.com.

∑
EF = Sum of SSRN Author-Level

Eigenfactor Scores associated with that institution. Note: These rankings are
preliminary and incomplete (05/27/10). Citations to and from legal scholars are
substantially undercounted until CiteReader has completed the extraction of refer-
ences in footnotes in legal papers in the SSRN eLibrary. These rankings will change
as the task is completed.

Rank Institution
∑

EF
1 Harvard University 8.73
2 University of Chicago 5.01
3 Massachusetts Institute of Technology (MIT) 3.60
4 New York University 3.44
5 University of California, Berkeley 3.10
6 Stanford University 2.83
7 Columbia University 2.62
8 University of Pennsylvania 2.38
9 Princeton University 2.29
10 Yale University 2.12
11 Northwestern University 1.77
12 Federal Reserve Banks 1.77
13 International Monetary Fund (IMF) 1.58
14 Dartmouth College 1.57
15 World Bank 1.54
16 Government of the United States of America 1.52
17 Duke University 1.29
18 University of Michigan at Ann Arbor 1.25
19 University of California, Los Angeles (UCLA) 1.23
20 London School of Economics & Political Science (LSE) 1.02
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Table 4.5: The top 20 countries represented in the SSRN database, ranked
by Author-Level Eigenfactor Scores. There were 113 countries represented in
the database. A complete list can be found at SSRN.com.

∑
EF = Sum of

SSRN Author-Level Eigenfactor Scores associated with that country. Note:
These rankings are preliminary and incomplete (05/27/10). Citations to and from
legal scholars are substantially undercounted until CiteReader has completed the
extraction of references in footnotes in legal papers in the SSRN eLibrary. These
rankings will change as the task is completed.

Rank Country
∑

EF
1 United States 77.24
2 United Kingdom 4.16
3 Germany 1.78
4 Canada 1.46
5 France 1.41
6 Italy 1.14
7 Switzerland 1.09
8 Netherlands 1.01
9 Israel 0.97
10 Spain 0.95
11 Sweden 0.85
12 Albania 0.67
13 Australia 0.63
14 China 0.49
15 Belgium .41
16 Denmark .023
17 Korea 0.20
18 Bulgaria 0.20
19 Japan 0.19
20 Norway 0.18
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these data to rank authors by downloads. Table 4.6 lists the top 20 authors

by this metric. Each time a paper is downloaded, the authors of that paper

receive credit for that download. The credit is divided evenly among the

authors, similar to how citation credit is distributed (see Methods). The

download weight is simply the sum of this weight for each author in the

SSRN13.

Comparing Table 4.2 to Table 4.6, the top 20 lists change dramatically,

indicating that downloads and citations provide different information. Re-

searchers in bibliometrics have explored the relationships between citations

and usage for several data sets; in general, citation measures and usage

measures are positively correlated but provide complementary information

about the influence of scholarly papers [35, 15, 13, 57]. Figure 4.8 is a log-log

plot that shows author-level Eigenfactor Scores plotted against the “down-

load weight” for each author. Download weight is a weighted form of total

downloads, with weights dividing credit equally among authors so that a

paper with 3 authors and 300 downloads contributes a score of 100 to each

author.

We collected download information for the same 86,170 authors included

in the citation network. The average number of downloads for these authors

is 705.6, with a standard deviation of 3428.2. When the credit is divided

among the authors (as explained in previous paragraph), the average is

384.7 and the standard deviation is 2184.2. The maximum download weight

attained up to this point is 300,322 (accomplished by one of the authors of
13SSRN goest to great lengths to ensure that reported downloads are free of biases

caused by bots, search engines, or gaming.
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Table 4.6: The top 20 authors by downloads per author. The weight for
each downloaded paper is distributed evenly among the authors (i.e., an
author will receive half a download if they co-author a paper with one other
author). The downloads shown in the table is the sum of this weight for each
author. A complete list can be found at SSRN.com. Note: These rankings are
preliminary and incomplete (05/27/10). Citations to and from legal scholars are
substantially undercounted until CiteReader has completed the extraction of refer-
ences in footnotes in legal papers in the SSRN eLibrary. These rankings will change
as the task is completed.

Author Downloads Institution
1 Jensen, Michael C. 300,322.12 Harvard University
2 Fernandez, Pablo 200,550.08 University of Navarra
3 Fama, Eugene F. 176,373.45 University of Chicago
4 Velez-Pareja, Ignacio 124,042.96 Univ Tecnologica de Bolivar
5 Solove, Daniel J. 119,976.50 George Washington University
6 Bruner, Robert F. 110,471.78 University of Virginia (UVA)
7 French, Kenneth R. 85,399.17 Dartmouth College
8 Bebchuk, Lucian A. 85,086.42 Harvard University
9 Goetzmann, William N. 68,465.07 Yale University
10 Castronova, Edward 67,984.33 Indiana Univ. Bloomington
11 Lott, John R. 66,524.67 University of Maryland
12 Bainbridge, Stephen Mark 63,295.83 UCLA
13 Sunstein, Cass R. 63,154.87 Harvard University
14 Meckling, William H. 59,753.17 University of Rochester
15 McGee, Robert W. 57,461.33 Florida International Univ.
16 Black, Bernard S. 56,655.45 Northwestern University
17 Faber, Mebane T. 56,231.00 Unaffiliated Authors
18 Lemley, Mark A. 53,060.62 Stanford University
19 Penman, Stephen H. 52,890.04 Columbia University
20 Lo, Andrew W. 52,752.20 MIT
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Figure 4.8: Downloads vs Eigenfactor Scores for SSRN authors. In this
log-log plot, each data point represents an author and their corresponding
Eigenfactor Score and number of downloads per Author. There are 50,233
authors represented in this figure. Authors that have an Eigenfactor Score
of zero or have zero downloads are not shown.
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this paper).

The Pearson’s linear correlation coefficient between Eigenfactor and down-

loads is 0.466. The correlation between Eigenfactor and download weight

is ρ = 0.461. Thus, we see that Eigenfactor scores provide considerable in-

formation above and beyond that available from download scores and vice

versa. There are scholars that have a relatively high Eigenfactor Scores but

few downloads; in many cases this occurs because the paper is available from

other sources such as the NBER or CEPR servers and because NBER and

CFPR charge non-members $5 for downloading NBER and CEPR papers

on SSRN, while most of the rest of the papers on SSRN can be downloaded

at no cost. There are also authors (such as Fairmain with his classic treatise

“Fuck” [23]; see also [24] for the impact of that oft-downloaded article on

institutional rankings) who have written papers that are downloaded a large

number of times for various reasons but receive relatively few citations.

There are 20,759 authors that have an Eigenfactor Score of zero but

have a nonzero number of downloads per author. This means that there are

many papers in the SSRN that are downloaded and viewed but are not cited.

There are no authors that had zero downloads but a nonzero Eigenfactor

Score. This occurs because no citations are counted in SSRN unless the full

text paper is available on SSRN.

Usage data can also be used to rank institutions. Table 4.7 shows the

top 20 institutions ordered by download weight. The
∑

D was calculated

by summing the download weight for every author associated with each

institution. As with author rankings, institutional citational ranks differ

substantially from institutional download ranks.

79



Table 4.7: The top 20 research universities and other academic institutions
ranked by author downloads. There were 5,946 institutions ranked. A com-
plete list can be found at SSRN.com.

∑
D = Sum of SSRN Author-Level

Download Weight associated with that institution. Note: These rankings are
preliminary and incomplete (05/27/10). Citations to and from legal scholars are
substantially undercounted until CiteReader has completed the extraction of refer-
ences in footnotes in legal papers in the SSRN eLibrary. These rankings will change
as the task is completed.

Rank Institution
∑

D
1 Harvard University 1,395,085.95
2 University of Chicago 825,794.72
3 New York University 680,270.35
4 Yale University 653,609.49
5 Columbia University 552,881.43
6 World Bank 484,480.50
7 University of Pennsylvania 479,531.53
8 Massachusetts Institute of Technology (MIT) 446,829.69
9 Stanford University 439,257.11
10 University of Virginia (UVA) 413,694.73
11 International Monetary Fund (IMF) 389,620.21
12 Duke University 377,830.67
13 University of California, Berkeley 354,032.59
14 University of California, Los Angeles (UCLA) 327,435.03
15 George Washington University 326,110.12
16 University of Michigan at Ann Arbor 306,579.04
17 Government of the United States of America 304,925.15
18 Federal Reserve Banks 296,349.09
19 University of Navarra 267,593.82
20 University of Illinois at Urbana-Champaign 258,415.56
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4.3.5 The arrow of time

One particular challenge with iterative ranking algorithms at the paper level

is the time-directionality of citation networks: any given paper cites only

papers published earlier than it. Therefore, a random walker following ci-

tations will progressively move backwards in time. One way to counter this

effect is to bias the teleport process toward more recent publications [54].

In principle, the same problem could arise for author-level networks if they

extend over sufficiently long time intervals; Alfred Marshall never cited Paul

Samuelson. Random walks on the author network will tend to move back-

ward in time and thus earlier authors may receive a disproportionate number

of visits and thus a disproportionately high score.

In practice, this does not turn out to be a major problem for the SSRN

corpus, given its relatively narrow time window (1998 to present14) and

the fact that most authors with early papers in the database remain active

in the community at present. Thus we do not need to employ any sort

of time-biased teleport mechanism in the article-level Eigenfactor rankings

that we compute for the SSRN. To check this we looked at the distribution

of papers dates15 immediately after teleport, one step after teleport, etc. If
14Authors can and do submit papers with dates earlier than 1998. As time goes on, more

early papers will be uploaded to SSRN; however, if those earlier papers are from authors
still active in the SSRN community, we don’t expect our random walker to progressively
move backwards in time.

15The ’paper date’ is the first available date that we could find for each paper. The
date would be the earliest of the following: (1) paper date, (2) date the paper was entered
into the SSRN system, or (3) date shown on any citation that is matched to the paper. If
a paper was entered in 2000 but has a paper date of 1975, then 1975 is the date used for
the paper. If a paper was entered in 2000, has an unrecognizable paper date, but has a
citation that indicates that is was written in 1975, then 1975 is used. The earliest date of
these three scenarios is always used. This is especially useful when dealing with multiple
versions of a paper.
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Figure 4.9: The probability distribution of finding an author with their
oldest paper (top panels) and most current paper (bottom panels) in each
of the last ten years, after teleportation and one step after teleportation.
After one step on the network, their is a higher probability of finding an
author with a paper before 1998, but the probability is higher still of finding
an author —possibly the same author — with a paper subsequent to 2008.
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the random walk tended to drift back in time, we would see that, as we

take more random walk steps, the distribution of paper dates would shift to

earlier years. Figure 4.9 shows the distribution of authors’ earliest papers

(top panel), and most recent papers (bottom panel) after teleport (0 steps)

and after a single step on the network16. After one step, the distribution

of the oldest paper is shifted back in time, but this does not in and of

itself indicate strong overall backward movement. In fact, the distribution

of the most recent paper actually shifts forward in time after a step on the

network. This means that the random walk process moves us toward authors

with older papers in the database–but these same authors also have more

recent papers as well. This is less counterintuitive than it seems; the random

walk process moves toward authors with more papers overall and thus we

should not be so surprised to see a broader range of dates for these authors.

4.4 Discussion

The SSRN community, like other on-line archives, performs an important

function for the scholarly community. By facilitating the distribution of

working papers and by making author-submitted manuscripts at all stages

easily available and at zero cost, SSRN reduces the time that it takes for an

idea, first conceived in one scholar’s mind, to become a part of the conver-

sations among many scholars around the world. With the work described in

this paper, we aim to provide a similar service to the academic community.

The infrastructure at SSRN aids the delivery process: it makes it easy to
16The distributions change very little for higher numbers of steps and thus are not

shown.
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find a paper once you know that you want to read it.

Using bibliometric analyses of the sort developed here, we can also aid

the discovery process, helping people discover papers that they would like

to have read. As Eugene Garfield recognized in 1955 [28], the latticework

of citations in scholarly publications offer a valuable reference tool in their

own right; users can follow citations backward in time to pursue the origins

of the ideas presented in a paper, and forward in time to see the subsequent

development of those ideas. Indeed, SSRN makes this very easy now. Each

abstract page has on it a tab that allows readers to look backward in the

literature by presenting the references of the current paper (with links where

available) and allows readers to look forward in the literature by providing

a tab that presents links to the citing papers. In effect these tabs provide a

very useful search technology.

Just as Google’s PageRank algorithm helps with the discovery process

on the world wide web by filtering search results, the Eigenfactor metrics de-

scribed here can help with the discovery process within this citation network.

Properly integrated with other search tools and algorithms, the Eigenfactor

metrics can help users to find important papers that may have been over-

looked by other ranking methods based on downloads or reputation. Such

applications in discovery provide a major motivation for the present work.

We have ongoing research in this area.

Rather than running the Eigenfactor Algorithm on the full network, we

can apply the algorithm to any subset of the citation network, such as those

authors affiliated with one particular institution or country, to get rank-

ings specific to the interests of that group. Librarians and other collection
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agencies could analyze their own specific subscriptions. Departments and

colleges could look at intra-college citations among their faculty to look at

how closely their faculty are working together and who is most central to

the collaborative work being done. Journal societies and associations could

use these algorithms to find the active members—who is citing and who is

being cited by their members. Other online archives like SSRN could find

who is being read in their collections and what groups are contributing to

their particular field. There are many ways that reference networks can be

analyzed using the Eigenfactor metrics and related approaches.

Finally, it is important to recognize what these statistics do and do not

represent. Eigenfactor is not a direct measure of quality. Rather, Eigenfac-

tor is (as discussed above) one of a family of network centrality measures.

The Author-Level Eigenfactor Scores presented here measure the central-

ity of authors within the particular network (SSRN) that we study. For

example, notice that of the top 10 authors in Table 4.1, half of them are

associated with Harvard University. While all of these individuals are influ-

ential academics by any measure, the preponderance of Harvard faculty at

the top of the list probably reflects the origins of SSRN at Harvard and thus

the centrality of this group of researchers in the broader network they have

formed around themselves. The same caution should also be applied to the

institutional rankings derived here.

For our purposes, these rankings are simply one of many filters that

can be applied to a large, seemingly unmanageable data set. We believe

that pre-print and post-print archives such as SSRN are extremely useful

for the scholarly community and for the quick dissemination of new ideas
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and papers. Ultimately, we would like to use filters like these to build better

search algorithms that help researchers mine the vast, and ever-expanding

scholarly literature.

4.5 Conclusion

We would like to conclude with a more general note about the act of rank-

ing. Ranking papers, authors, journals, departments, or institutions does

not necessary make the world a better place. Indeed, where ranking systems

provide narrow-minded administrators and faculty with an excuse to avoid

hard work and deep thought, they may even be harmful to the functioning

of academia. Then why rank at all? While ranking for its own sake may

or may not offer net benefits to the community, ranking in the service of

search will unquestionably improve our ability to do science. Search engines

such as Google have fundamentally changed scholarship by improving our

ability to find the information that we value, rapidly and efficiently. Rank-

ing algorithms such as PageRank lie at the heart of these search engines —

effective search requires that we account for not only the match of search

terms to target document, but also for the importance of the target docu-

ment within a larger collection. It is our hope and belief that advances in

ranking will serve our quest for more efficient search, helping academics sift

through ever-growing volumes of information to find the hidden gems and

lost papers that are valuable for their research endeavors.
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Abstract

To date, there is no definitive paper on the Eigenfactor Metrics yet the

work has received considerable recognition by the academic community in

a relatively short amount of time. Does this mean that traditional forms of

scholarly communication are outdated? Not necessarily, but I do contend

in this short paper that a key ingredient of Eigenfactor.org has been the

”.ORG” part. Instead of writing a scientific paper describing how one could

use the entire citation network to rank journals, we simply did it and then

put the results on the web for the world to see. My experience has been

that by doing this, the idea has been recognized far more than it would have

been sitting in some low or even high impact journal.
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5.1 Introduction

In the previous four chapters, I have talked about what the Eigenfactor Al-

gorithm is (Chapter 1), what it measures (Chapter 2), how it differs from

Impact Factor (Chapter 3) and how it can be extended to author-level ci-

tation networks (Chapter 4). This chapter will focus on a slightly different

aspect of the Eigenfator Project. It will focus on the implementation and

presentation of the Eigenfactor project. This has been critical to the success

of the project, and I think the lessons learned from this component reflect

the changing landscape of scholarly communication1.

If the idea of Eigenfactor would have been born just one decade earlier,

it would likely have been published in a conventional academic journal . A

few scholars may have come across the paper, but the chances of Eigenfactor

being used by librarians, administrators, publishers, editors and scholars

around the world would have been very low. What did the extra decade

provide for this idea? The World Wide Web. Instead of talking about

this idea of using a pagerank approach to evaluate scholarly journals, we

did it and then used existing web technologies to display our results (www.

eigenfactor.org). This aspect of the Eigenfactor story has been critical

to its success and encourages me to reflect on these alternative forms of

scholarly communication for my future work in science.
1I am writing this chapter in first person because this chapter is a chapter of reflections.

It is not a chapter of data or hypotheses. I see my dissertation as a medium for telling the
parts of the Eigenfactor story that otherwise would not be told in any journal article or
book chapter. And, it is the story of this chapter that has been so critical to the success
of this project.
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5.2 The changing landscape of scholarly publica-

tion

Scientific scholarship depends on a system of communication. Ever since the

first issue in 1665 of the Philosophical Transactions of the Royal Society, the

scientific periodical has been one of the pillars of this system of communi-

cation (Figure 5.1). Other forms have existed (e.g., conference proceedings,

books, etc); however, publishing in a high impact journals has carried the

most prestige in most fields of science for the most part of the last three

centuries.

The high impact journals reward authors with three things: a large au-

dience, peer review and peer recognition2. The currency of scholarship is

recognition; therefore, scientists are willing to work very hard to publish

their ideas in these journals. How does one receive recognition? People first

have to read what is to be recognized. Maximizing readership is a goal of

most scholars. But it is not just a large audience that drives scientists to

Nature and Science. These journals also attract some of the best reviewers

in their respective fields. This has two consequences. One, it offers oppor-

tunities to greatly improve an author’s paper. And, two, it creates a general

attitude that good journals are more difficult to publish in. A paper pub-

lished in a high ranking journal is recognized by peers, especially those peers

making tenure and promotion decisions.
2Some may claim that journals not only provided a means of disseminating ideas but

also provide a reliable repository. In that case, journals also reward authors with a place
to dependably archive their ideas for future generations. I will focus on the transmittance
rewards for this paper.
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Figure 5.1: The cover of the first issue of the Philosophical Transactions of
the Royal Society. This is considered one of the first issues of a scholarly
journal ever published. The copyright has expired on this image and is in
the public domain.
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In my graduate student lifetime, the digital revolution has offered more

options for maximizing the readership reward. The open access movement

has produced journals like PLoS One, which aim to maximize readership by

removing the cost for readers. The World Wide Web has offered a medium

where scientists can report findings and discuss new ideas on blogs and

personal websites. Neither of this modes of communication have achieved the

peer recognition status of Nature and Science. But will increased exposure

over time eventually lead to open access journals and web technologies as

viable forms of scientific communication? The Eigenfactor example is one

case study.

5.3 Publish or Perish?

When Carl Bergstrom, Ted Bergstrom and I came up with the idea of using

the entire network to rank scholarly journals back in 2005, we first thought

(as any good academic would) ”we need to write this up.” That was in

2005; it is now 2010 and we still have not written the definitive paper on

Eigenfactor. So, what explains the widespread success3 of the project? Both

Carl and I have been invited to speak about Eigenfactor at conferences

and meetings around the world4. Thomson-Reuters has adopted the metric

and placed it alongside Impact Factor in the Journal Citation Reports (see
3’Success’ is a sticky term. It can mean many different things to different people. Some

could easily argue that Eigenfactor was not a success. In this chapter, I equate ’success’
with the number of articles and places using or mentioning Eigenfactor. I understand that
this is not the best proxy of success, but I want to stress that this chapter is not about
the success of Eigenfactor. This chapter is really about alternative forms of scholarly
communication, and I am using the Eigenfactor story as a way of supporting this claim.

4A list of some of the invited talks can be found here http://octavia.zoology.

washington.edu/people/jevin/Presentations.html
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Figure 5.2). The Scholarly Publishing and Academic Resources Coalition

(SPARC) awarded Carl and Ted Bergstrom the annual SPARC Innovator

Award5 based on the work at journalprices.com and eigenfactor.org.

One of PNAS’s most downloaded articles of all time is about Eigenfactor6.

A radial diagram displaying Eigenfactor data has been on the cover of one

of the largest academic journals in the world7. Google has located over 7

million instances of ”Eigenfactor” – a word that didn’t exist just 5 years

ago8.

”Publish or perish.” If this is true, does this advice apply only to re-

searchers or does it also apply to the research itself? In the digital age, is it

necessary to communicate one’s findings in a high impact journal in order

to get noticed by the rest of the academic community? Or, are there better

ways to get one’s ideas noticed? In a climate of limited research funding,

how important is the training of graduate students in all forms of schol-

arly communication? Based on my experience working on the Eigenfactor

Project, I will address these questions and specifically aim to answer the

following: given that no definitive paper has been written on Eigenfactor,

what is the source of its recognition?

I see four, possible (non-mutually exclusive) explanations that I will

address in turn:

• Eigenfactor as a tool

• Eigenfactor.org
5http://www.arl.org/sparc/innovator/bergstroms.shtml
6http://www.pnas.org/content/106/17/6883.full
7http://www.jbc.org/content/284/19.toc
8Search was conducted on August 2, 2010
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Figure 5.2: A snapshot of Thomson-Reuters Journal Citation Reports. The
Eigenfactor Metrics are now included in the annual report alongside Impact
Factor.
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• Need for alternative metrics

• Information visualization

5.3.1 Eigenfactor as a tool

Eigenfactor is something that people use. Librarians use it to make collec-

tions decisions. Publishers use it to compare their journals to their com-

petitors. Scholars use it to make decisions on which journals give them the

biggest bang for the article. Eigenfactor is not a discovery about the world.

It is a statistical tool for identifying important nodes in citation networks.

Those nodes can be journals, authors, institutions or papers.

This distinction between a tool and a discovery explains part of the re-

sponse Eigenfactor has received. When Eugene Garfield introduced Impact

Factor [28, 26, 27], it wasn’t that he discovered some deep, important law

of the universe; he developed a statistic that has become very popular for

identifying important journals (that publish those deep, important laws of

the universe).

The same goes for Eigenfactor. It is another way of ranking the relative

influence that each scholarly journal is having on the moving frontier of

science. These rankings can be very useful for academia and industries

associated with academia. This is one of the big reasons for the attention

Eigenfactor has received.

This is very similar to the Impact Factor response; however, there are

differences between the two. In addition to the algorithmic variations (see

Chapter 2), Eigenfactor and Impact Factor differ in their approach to the
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problem itself. Impact Factor is a degree centrality measure, whereas Eigen-

factor is an eigenvector centrality measure. This has important philosophical

differences. Impact Factor does not care about the network; for the Eigen-

factor algorithm, it is the network that matters (and, more specifically, the

whole network). This ’whole-network’ approach to citation data has lead to

other developments, most notably the map equation and mapequation.org9

[49, 50, 48, 51]. Combining these network measures and mapping techniques,

the next application of this Eigenfactor ’tool’ will be to build better ways

of navigating large networks like the scholarly literature.

In sum, Eigenfactor is a tool that people use. This partly explains the

high traffic to Eigenfactor.org. But it is not popular just because it’s just a

tool. It’s a tool that has been used to rank journals, inspire maps of science

and better navigate the scholarly literature.

5.3.2 Eigenfactor.org

Using citation data from Thomson-Reuters’ Journal Citation Reports, we

calculated Eigenfactor Scores and Article Influence Scores for over 8,000

journals. We then built a website with the help of Ben Althouse, an under-

grad in our lab at the time, registered the website and put the scores up for

the world to see (Figure 5.3). We have been tracking our visitors since the

inception of Eigenfactor.org. When the site first went up in January of 2006

(check date), users trickled in mainly by word of mouth. We now receive

thousands of visitors a day10. According to Google Scholar, the College
9Details can be found at www.mapequation.org

10On average, the site receives about 1.5 million hits per month and more than 80,000
visits per month
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Figure 5.3: A snapshot of the website built for the Eigenfactor Project.

and Research Libraries article on Eigenfactor [6] has been cited 74 times11,

Eigenfactor is mentioned in hundreds of blogs and websites, it is recognized

by almost any librarian around the world involved with journal collections

and included in conference programs around the world.

Certainly having a website has catapulted the idea and the adoption of

the metric. Publishers can go to the website and check what their journal’s

Eigenfactor score is. If the Eigenfactor idea had only been described in a

published paper, that publisher would likely never see an Eigenfactor score
11As of August 1, 2010
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or even know what an Eigenfactor score is.

The website is also a repository for other aspects of the project, such

as cost-effectiveness12, commentaries (see Appendix) [60, 6, 10, 9, 64, 61],

and visualizations (www.eigenfactor.org). There likely exists a feedback

among explanations – the website lead to more commentaries and the com-

mentaries lead more people to the website – but it is website that I see as

having the most influence at least in the beginning of the project.

I want to emphasize one important thing. I do not claim that publishing

on the web and writing commentaries is the best strategy for every graduate

student. In fact, the project may have been even more successful with that

defnititve, highly cited, highly read paper that we never wrote (but still may

write). But I think there is a lesson to be learned for other graduate students

and for me. Writing papers is still the currency of success in academia, but

it would be foolish nowadays to ignore the power of the web for getting your

idea out. The Eigenfactor Project was ideal because it is a tool people use

and the results can easily be displayed and understood on a webpage. Not

everyone’s research is as conducive to this kind of presentation.

5.3.3 Need for alternative journal metrics

Since Gross and Gross’s proposal in 1927, scholars have used citation counts

as the primary statistic for evaluating scientific journals [30]. There have

been small modifications on this proposal since then. The most famous

modification is Impact Factor [28]. Administrators use this number to make

tenure and promotion decisions. Librarians use it to determine which jour-
12More info at http://www.eigenfactor.org/pricesearch.php
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nals to keep in their collections. Publishers use it for making purchasing

decisions of new journals. Researchers use it to determine the best journals

to publish their work in. University rankings systems use it to assess the

best schools. Advertisers use this as a way of determining which journals to

place their ads in.

But, as anyone knows who has written about Impact Factor, it has its

limitations, and many are concerned with its overuse and misuse [41]. The

community has been asking for alternative metrics. Simply publishing an

idea about a new metric is not enough. Over the last ten years, there have

been hundreds of papers proposing a new scholarly metric13. Only a few

have stuck. Eigenfactor is one example. Other examples include the h-

index [31], other pagerank variants [25] and metrics that use download data

versus citations [15, 14].

Why is it that Eigenfactor took off while many of these others have not?

The Eigenfactor Metrics had to capture the mindshare of the community. To

do this, the idea had to be good (and was the result of many contributors

before this project, such as Bonacich, De Solla Price, Garfield, Page and

Brin), and the idea had to be accessible. The accessibility came in the form of

a website (www.eigenfactor.org), commentaries (see Appendix) [60, 6, 10,

9, 64, 61] and presentation (http://octavia.zoology.washington.edu/

people/jevin/Presentations.html). After it had captured the mindshare

of the community, the Eigenfactor Metrics were included in the JCR, which

also speaks to the need for alternative metrics.
13Using Web of Science and Google Scholar and then limiting the search to just two

journals, JASIST and Scientometrics, one can find well over a hundred articles that deal
with these kinds of metrics.
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Over the last decade, the need for good alternative metrics has been

strong, and the timing has been good for Eigenfactor. Nonetheless, I do

think the idea would have survived 10 years earlier given the same technolo-

gies of communication.

5.3.4 Good information visualization

Having good visualizations at eigenfactor.org has definitely helped in

promoting the Eigenfactor project. Good visualizations can tell stories one

knows exists in the data, and they can reveal stories one didn’t even know

existed. The interactive browser (Figure 5.4) and the radial diagram14, the

motion charts (Figure 5.5) and the maps of science are all examples of this

story telling. And, even if they didn’t tell stories, people like pretty pictures.

Packaging and branding matters15, even in science.

Good visualizations have brought visitors to Eigenfactor, but I found

through server logs that the majority of visitors to eigenfactor.org are there

to look at Eigenfactor scores and Article Influence scores. Still, if I have

learned anything over the last several years working on big data sets and

big networks, good visualizations matter and I look to improve my skills in

information visualization in the years to come.

The following quote from Hal Varian16, Google’s chief economist, echos

this perfectly:
14These and other visualizations at well-formed.eigenfactor.org were built by Moritz

Stefaner. Other work by Moritz can be found at http://moritz.stefaner.eu/
15See http://128.95.253.42/motion/
16Source of quote can be found at http://flowingdata.com/2009/06/04/

rise-of-the-data-scientist/
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Figure 5.4: A snapshot of the interactive browser that moves a user through
the map of science. This is an example of the power of information visual-
ization.
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Figure 5.5: A snapshot of the motion graphs included at Eigenfactor.org
that show in an interactive way how the scores of journals change over time.
Stories can be revealed through visualizations like this that one would not
otherwise find.

” The sexy job in the next ten years will be statisticians The ability to

take datato be able to understand it, to process it, to extract value from it,

to visualize it, to communicate itthats going to be a hugely important skill.”

5.4 Conclusion

Aside from the idea itself, the four explanations all contributed to the re-

sponse the Eigenfactor project has received. There was and is a need for

alternative metrics, and Eigenfactor is one tool to meet that need. The

biggest lessons for me, though, have been the lessons in web presentation

and information visualization that I will take to any new project I work on.

The old mantra in academics — publish or perish — may be changing with
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these other forms of communication. The challenge for the tenure commit-

tees will be to figure out how to assess the value of a researcher’s work when

the work is presented using these alternative forms of communication.

One of the biggest changes in academia that I have seen during my

lifetime as a graduate student has been the changes in how science is com-

municated and evaluated. Eigenfactor has been a product of this change

and a possible contributor of further changes down the road.
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Appendix A

Calculating Journal-Level

Eigenfactors (Pseudocode)

Jevin West and Carl T. Bergstrom1

1Both authors are at the Department of Biology, University of Washington, Seattle WA
98115. If you have any questions, feel free to email Jevin at jevinw@u.washington.edu.
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A.1 Overview

There are seven steps for calculating Journal-Level Eigenfactors:

1. Data Input

2. Creating an Adjacency Matrix

3. Modifying the Adjacency Matrix

4. Identifying the Dangling Nodes

5. Calculating the Stationary Vector

6. Calculationg EigenFactor (EF) and ArticleInfluence (AI)

7. Outputting the Results

Like Thomson’s Impact Factor metric, Eigenfactor measures the number

of times that articles published during a census period provide citations to

papers published during an earlier target window. The Impact Factor as

reported by Thomson Scientific has a one year census period and uses the

two previous years for the target window. In its current form, Eigenfactor

has a one year census period and uses the five previous years for the target

window.

A.1.1 Data Input

Four inputs — two files and two constants — are needed:
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• Journal File: using the JCR database, create a list of unique journals

included in the Science and Social Science JCR.2 This list should con-

tain journals from the Sciences and the Social Sciences. For Eigenfac-

tor we combine these two lists instead of treating them as two separate

lists. Then list how often each journal cites each other journal, where

we count citations that are given during census period (e.g. 2006) to

papers published during the target window (e.g. 2001–2005).

• Article File: this is the file that contains the number of articles that

each journal produces in the five previous years.3

• Alpha constant (α = 0.85)

• Epsilon constant (ε = 0.00001)

A.1.2 Creating an Adjacency Matrix

The journal citation network can be conveniently represented as an adja-

cency matrix Z, where the Zij-th entry indicates the number of times that

articles published in journal j during the census period cite articles in jour-

nal i published during the target window. The dimension of this square

matrix is n x n where n is the number of unique ISI journals. For example,

suppose there are journals A, B, and C.

2For 2006, there were 7611 unique ISI journals for the combined Science and Social
Science combined list in the JCR (Journal Citation Reports).

3Note: In checking to be sure that you are able to replicate our results, we should
compare our article counts for five years since there are some changes in the article numbers
reported for each journal from year to year.
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A B C
A 2 0 3
B 4 1 1
C 0 2 7

In the adjacency matrix above, journal A cites itself 2 times, it cites journal

B 4 times, and it doesn’t cite journal C at all. Journal B receives 4 citations

from journal A, 1 citation from itself, and 1 citation from journal C.

A.1.3 Modifying the Adjacency Matrix

There are some modifications that need to be done to Z before the eigen-

vectors can be calculated.

• First, we set the diagonal of Z to zero (i.e., we set all of the entries

Zii = 0). This is done so that journals do not receive credit for self-

citations.

• Second, we normalize the columns of the matrix Z (i.e., divide each

entry in a column by the sum of that column). To do this, compute

the column sums for each column j as Zj =
∑

i Zij. Then divide the

entries from each column by the corresponding column sum to get the

entries of the H matrix: Hij = Zij/Zj . There may be columns that

sum up to zero (i.e., journals that cite no other journals). These are

danlging nodes, and we will deal with them in the next section.

In the example below, we take an adjacency matrix through these two mod-

ifications. The matrix you get after these two modifications is H. This

example matrix will be used throughout the pseudocode as an example of
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how to calculate the EF of a journal. The numbers in parentheses next to

each journal letter represent the number of papers that each journal has

published.

Example raw adjacency matrix (Z)

A B C D E F
A(3) 1 0 2 0 4 3
B(2) 3 0 1 1 0 0
C (5) 2 0 4 0 1 0
D(1) 0 0 1 0 0 1
E (2) 8 0 3 0 5 2
F (1) 0 0 0 0 0 0
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1. Set the diagonal to zero

↓

A B C D E F
A(3) 0 0 2 0 4 3
B(2) 3 0 1 1 0 0
C (5) 2 0 0 0 1 0
D(1) 0 0 1 0 0 1
E (2) 8 0 3 0 0 2
F (1) 0 0 0 0 0 0

2. Normalize the columns. This matrix is H.

↓

A B C D E F
A(3) 0 0 2/7 0 4/5 3/6
B(2) 3/13 0 1/7 1 0 0
C (5) 2/13 0 0 0 1/5 0
D(1) 0 0 1/7 0 0 1/6
E (2) 8/13 0 3/7 0 0 2/6
F (1) 0 0 0 0 0 0
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A.1.4 Identifying the Dangling Nodes

As mentioned in the previous section, there will be journals that don’t cite

any other journals. These journals are called dangling nodes and can be

identified by looking for columns that contain all zeros. These columns need

to be identified with a row vector of 1’s and 0’s. Call this vector d. The 1’s

indicate that a journal is a dangling node; the 0’s indicate a non-dangling

node. For the example above, d would be the following row vector:

A B C D E F
di 0 1 0 0 0 0

A.1.5 Calculating the Influence Vector

The next step is to construct a transition matrix P and compute its leading

eigenvector. This eigenvector, normalized so that its components sum to

1, will be called the influence vector π∗. This vector gives us the journal

weights that we will use in assigning eigenfactor scores.

To calculate the influence vector π∗, we need six inputs: the matrix H

that we just created, an initial start vector π(0), the constants α and ε, the

dangling node vector d and the article vector a.

Article Vector. Let Atot be the total number of articles published by all of

the journals. The article vector a is a column vector of the number of articles

published in each journal over the (five-year) target window, normalized so

that its entries sum to 1. (To do this normalization, divide the number
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of articles that each journal publishes by Atot). Using the example from

above, Atot = 3 + 5 + 2 + 1 + 2 + 1 = 14 and the article vector would be

Article Vector

ai

A 3/14

B 2/14

C 5/14

D 1/14

E 2/14

F 1/14

Initial start vector π(0). This vector is used in iterating the influence

vector. Set each entry of this column vector to 1/n. For our example, this

vector would look like

π
(0)
i

A 1/6

B 1/6

C 1/6

D 1/6

E 1/6

F 1/6

120



Calculating the influence vector π∗. The influence vector π∗ is the

leading eigenvector (normalized so that its terms sum to one) of the matrix

P, defined as follows:4

P = αH′ + (1− α)a.eT ,

Here eT is a row vector of all 1’s and a.eT is thus a matrix with identical

columns a. The matrix H′ is the matrix H, with all columns corresponding

to dangling nodes replaced with the article vector a. In the example, H′

would be the following matrix (notice the replacement of the B column):

A B C D E F

A(3) 0 3/14 2/7 0 4/5 3/6

B(2) 3/13 2/14 1/7 1 0 0

C (5) 2/13 5/14 0 0 1/5 0

D(1) 0 1/14 1/7 0 0 1/6

E (2) 8/13 2/14 3/7 0 0 2/6

F (1) 0 1/14 0 0 0 0

Because P will be an irreducible aperiodic Markov chain by construc-

tion, it will have a unique leading eigenvector by the Perron-Frobenius the-

orem. We could compute the normalized leading eigenvector of the matrix
4This matrix describes a stochastic process in which a random walker moves through

the scientific literature; it is analogous to the “google matrix” that Google uses to compute
the PageRank scores of websites. The stochastic process can be interpreted as follows: a
fraction α of the time the random walker follows citations and a fraction 1−α of the time
the random walker “teleports” to a random journal chosen at a frequency proportional to
the number of articles published.
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P directly using the power method, but this involves repeated matrix mul-

tiplication operations on the dense matrix P and thus is computationally

intensive. Instead, we can use an alternative approach that involves only

operations on the sparse matrix H and thus is far faster5. To compute the

influence vector rapidly, we will iterate the following equation

π(k+1) = αHπ(k) + [αd.π(k) + (1− α)]a

This iteration will converge uniquely to the leading eigenvector of P, normal-

ized so that its terms sum to 1. To find this eigenvector, iterate repeatedly.

After each iteration, check to see if the residual (τ = π(k+1) − π(k)) is less

than ε. If it is, then π∗ ≈ π(k+1) is the influence vector. Typically, this

does not take more than 100 iterations with ε = 0.00001. Using the raw

adjacency matrx example above and the corresponding article vector, the

stationary vector converges after 16 iterations to the following vector with

α = 0.85 and ε = 0.00001:

π∗i
A 0.3040
B 0.1636
C 0.1898
D 0.0466
E 0.2753
F 0.0206

5Notice that the equation below uses the matrix H, without the dangling node columns
replaced, not the matrix H′. In fact, one does not need to ever construct the matrix H′

in the process of doing these calculations.
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A.1.6 Calculationg Eigenfactor (EFi) and Article Influence

(AIi)

The vector of eigenfactor values for each journal is given by the dot product

of the H matrix and the influence vector π∗, normalized to sum to 1 and

then multiplied by 100 to convert the values from fractions to percentages:

EF = 100
H.π∗∑
i[H.π∗]i

The Eigenfactor values for our example are thus

EFi

A 34.0510
B 17.2037
C 12.1755
D 3.6532
E 32.9166
F 0.0000
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The ArticleInfluence AIi for each journal (i) is calculated using the following

equation:

AIi = 0.01
EFi

ai

where EFi is the Eigenfactor for journal i and ai is the normalized article

vector. In words, the Article Influence is essentially the Eigenfactor/100,

divided by the fraction of all articles that each journal has published. The

Article Influence values for our example are

AIi

A 1.5890
B 1.2043
C 0.3409
D 0.5114
E 2.3042
F 0.0000
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A.1.7 Calculating (EFi) and (AIi) for non-ISI journals

Because the JCR lists citations from listed journals to many non-listed jour-

nals (and other reference items such as the New York Times), EFs can be

calculated for these non-ISI journals. AIs can also be calculated for non-

ISI journals if article information is available. Article information for these

journals are not found in the JCR database, so this information would have

to come from other sources.

To calculate non-ISI EFs, first retrieve the matrix Z. Zero the diagonals

and then find the sum of each column. Second, construct a matrix N that

contains the number of citations from the ISI journals. The matrix below

illustrates what it would look like when these two matrices are sewed to-

gether. The journal R, S and T are non-ISI journals of the matrix N. As

you can see, the non-ISI jouranals receive citations from ISI journals, but

since they are not listed in the JCR, we do not have a tally of the citations

that they give to ISI journals A–F.

A B C D E F
A(3) 0 0 2 0 4 3
B(2) 3 0 1 1 0 0
C (5) 2 0 0 0 1 0
D(1) 0 0 1 0 0 1
E (2) 8 0 3 0 0 2
F (1) 0 0 0 0 0 0

R(n/a) 3 0 0 0 0 2
S (2) 0 0 1 0 0 0

T (n/a) 0 0 1 0 1 0
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In the example above, the ISI journal, A, cites the non-ISI journal, R, 3

times. The ISI journal, E, cites the non-ISI journal, T, 1 time. The numbers

in parentheses again indicate the number of articles that each non-ISI journal

produced in the five year target window. In this example, we have data only

for journal S ; we do not know how many articles were published by R or T.

Now, divide each number in N by the corresponding column sum in the

Z matrix.6 . This new matrix N′ would look like

A B C D E F
R(n/a) 3/13 0 0 0 0 2/6

S (2) 0 0 1/7 0 0 0
T (n/a) 0 0 1/7 0 1/5 0

The Eigenfactor score for each non-ISI journal in this N′ matrix is the

product of that row vector times the influence vector π∗ for the ISI jour-

nals times 100. In vector notation, the vector of eigenfactors is simply

100 N′.π∗. For example, the row vector for journal R is {3/13, 0, 0, 0, 0, 2/6}

and the influence vector is the column vector that we calculated before,

π∗ = {0.3040, 0.1636, 0.1898, 0.0466, 0.02753, 0.0206}. Thus the extended

eigenfactor for journal B is the product of these vectors: EF(R) = 100 ( 3
13 ×

0.3040 + 2
6 × 0.0206)

Thus calculated, the eigenfactors for the non-ISI journals are

6Recall that the j-th column sum of this Z matrix indicates how many citations are
given out by that journal to all ISI-listed journals excluding itself. We use this — rather
than the column sum of the extended matrix formed by appending N to Z — because
this was the denominator we used in computing Eigenfactors for ISI-listed journals in
Section 1.5. We want to make the eigenfactor scores of for the non-ISI journals directly
comparable, so we use the same denominator here.
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EFi

R 7.7041
S 2.7114
T 8.2176

ArticleInfluence scores can be calculated for the non-ISI journals so long

as we have article counts. If we don’t have the article count for a non-ISI

journal, its AI is listed as NA. To calculate AI for non-ISI journals, use the

same equation used for the ISI journals

AIi = 0.01
EFi

ai

Here ai represents the entries in an extended version of the article vector

computed in step 1.5. The denominator for the ai’s should be the total num-

ber of articles Atot published by ISI-listed journals, not the total number of

articles published by all journals, ISI-listed or otherwise.7 Thus in our ex-

ample the ai value for journal S should be 2/14, not 2/16. Thus calculated,

the AIs for the non-ISI journals are

AIi

R NA
S 0.1898
T NA

7Again, we want our AI values for non-ISI journals to be directly comparable to those
for ISI journals, so we have to use the same denominator in our calculations.
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A.1.8 Outputting the Results

To get the journal rankings, just sort in descending order the EF and AI

vectors. Output the results in whatever format is easiest to compare rank-

ings. Right now, we are using Excel. The following is what we include in

our data output:

• Year

• Short Name

• Long Name

• Group (Science or Social Science)

• Field (e.g., Physics)

• Eigenfactor

• ArticleInfluence

• Impact Factor

• Total Articles (5 yrs)

• Total Citations Received (5 yrs)
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Computing the Eigenfactor TM Score and 
the Article Influence TM Score
Carl Bergstrom and Jevin West
University of Washington
Below is the complete source code for the Eigenfactor (TM) Algorthm used to compute 
the Eigenfactor (TM) Score and Article Influence (TM) Score, using Wolfram Research's 
Mathematica programming language. The three import files are the cross-citation matrix 
in .mtx sparse matrix format, a list of article counts, and a list of journal names. 

rawData = Import@"Zmatrix2007E.mtx", "MTX" D
articleCount = Import@"Article5yr_2007.csv", "CSV"D;
journalList = Import@"ISIuniqueJrns2007.csv", "CSV"D;

zeroDiagonal = rawData - DiagonalMatrix@Diagonal@rawDataDD;
columnSums = Normal@Apply@Plus, zeroDiagonalDD;
danglingNodes = Position@columnSums, 0D;
d = ReplacePart@Table@0, 8Length@columnSumsD<D,

danglingNodes Ø 1D;
cs = ReplacePart@columnSums, danglingNodes Ø 1D;
h = Table@zeroDiagonal@@i, jDDê cs@@jDD, 8i, 1, Length@csD<,

8j, 1, Length@zeroDiagonal@@1DDD<D;
a = articleCount ê Apply@Plus, articleCountD@@1DD;
update@pi_D := .85 h.pi + H.85 Hd.piL@@1DD+ .15L a
iter@pi_, k_D := Nest@update, pi, kD
piStar = iter@Table@81 ê Length@articleCountD<,

8Length@articleCountD<D, 30D
ef = Module@8prod<,
prod = h.piStar; 100 * prod ê Apply@Plus, Flatten@prodDDD

ai = 0.01 * ef ê a
resultsTable = Transpose@8Flatten@journalListD, Flatten@efD,

Flatten@aiD, Flatten@articleCountD<D

Export@"MathematicaEFScores_compressed_2007.csv",
resultsTableD



Appendix B

Eigenfactor — The Google

Approach to Bibliometrics

Jevin West, University of Washington, Seattle, WA

*This article was published in 2008 in Allen Press’s Front Matter 4:7. The

formatted article can be found at http://octavia.zoology.washington.

edu/people/jevin/Publications.html
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B.1 Not all citations are created equal

Not all citations are created equal. This is one of the core ideas behind

Eigenfactor1. Citations from more prestigious journals (like Science and

Nature) are worth more than citations from less important journals (like

the Journal of Obscurity). This meritocratic approach to Bibliometrics is

very similar to the philosophy behind Google’s PageRank algorithm, which

is at ”the heart of [its] software”2. Receiving a hyperlink from a highly

reputable website means more than a hyperlink from a neighborhood blog.

Both Google and Eigenfactor utilize the wealth of information inherent in

the structure of their respective networks. For Google, that information

can be found in the topology of the web, and for Eigenfactor, the

information can be found in the citation structure of the scholarly

literature. The success of Google’s search engine illustrates the power of

this approach to ranking. Part of the success behind PageRank can

actually be traced back to prior work that had been done in the field of

Bibliometrics3. With the advent of scholarly measures like Eigenfactor,

this relationship has come full circle.

The idea that important journals are cited by other important journals

may at first sound hopelessly circular, but the idea can be formalized in a

beautiful mathematical formula. We find the following heuristic helpful in

explaining what the Eigenfactor number represents. Imagine that a
1All the methods and data are freely available at www.eigenfactor.org. Feel free to

send comments or questions to Jevin West at jevinw@u.washington.edu
22http://www.google.com/technology/index.html
33Langville AN, Meyer CD. Google’s PageRank and Beyond, The Science of Search

Engine Rankings (2006) Princenton University Press
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researcher decides to spend all of eternity in the library randomly following

citations. In other words, the researcher first picks some random journal in

the library and, in that journal, points to some random citation. The

researcher then walks over to the journal of that citation and finds another

random citation. The researcher does this ad infinitum. Eigenfactor

measures how much time the researcher spends at each journal during that

infinite walk in the library. For example, the Eigenfactor for the Journal of

Biological Chemistry in 2006 is 1.82. This means that the researcher spent

1.82 percent of her time at the Journal of Biological Chemistry.

Eigenfactor therefore measures total value within the scientific literature.

Librarians are typically more interested in this sort of measure. However,

if a publisher or author wanted to know the value per article of a journal,

they would use the complimentary metric that we call Article Influence.

This particular measure is more comparable to the well-known Impact

Factor. Article Influence is simply the Eigenfactor of a journal divided by

the number of articles that the journal produced over a given time period.

Article Influence measures the prestige of a journal, rather than the total

value.

The Eigenfactor approach to measuring journal influence has some notable

nuances. For example, citations from non-review journals are worth more

than citations from review journals that typically have longer reference

lists. When the infinite researcher ends up at this type of journal in the

library, she can only choose one of those many references. The more

citations means the less likely any one of them will be followed in the next
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step. This also means that citations from frugal fields are also worth more.

All these nuances are hopefully in service of a metric that is less gameable.

No metric will ever replace reading papers as the best form of evaluation.

Nonetheless, with increasingly limited time and limited budgets, there will

continue to be a legitimate need for quantitative measures of the scholarly

literature. We would like to think that Eigenfactor is at least a step in the

right direction.
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Appendix C

The EigenfactorTM Metrics:

How does the Journal of

Biological Chemistry stack

up?

Jevin D. West1 and Moritz Stefaner2 and Carl T. Bergstrom1

*This article was published in 2009 in the The American Society for

Biochemistry and Molecular Biology, Today April 2009: 20-21 . The

formatted article can be found at http://octavia.zoology.washington.

edu/people/jevin/Publications.html

1Department of Biology, University of Washington, Seattle, WA

2Interaction Design Lab, University of Applied Sciences Potsdam, Germany
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C.1 The Eigenfactor Metrics

The scientific literature comprises a vast network of research papers, linked

to one another by scholarly citations; this network traces out the spread of

ideas through the scientific community [19]. At the Eigenfactor Project, we

use the structure of this network to assess the influence of scholarly

journals and to map out relations among scientific fields [6].

The main idea behind the Eigenfactor Metrics is that a journals influence

is determined by a weighted sum of the citations that it receives. Citations

from influential journals such as Nature, PLoS Biology, or Cell carry more

weight than citations from second- and third-tier journals. Which journals

are influential is determined by an iterative procedure analogous to

Googles PageRank algorithm [42]. Although iterative rankings require

more complicated computations than measures like impact factor, the

reward of accounting for the variable influence of citation sources is a much

richer measure of journal quality.

We use two primary measures to rank scholarly journals. The Eigenfactor

Score measures a journals total influence; with all else being equal, larger

journals have higher Eigenfactor scores. The Article InfluenceTM Score

measures the influence per article of a journal. As a per-article measure of

prestige, the Article Influence is comparable to Impact Factor. At the

Eigenfactor website, http://www.eigenfactor.org, we provide the

Eigenfactor scores and Article Influence scores for more than 8000

scholarly journals over the past decade, based on citation data from the
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Thomson-Reuters Journal Citation Reports (JCR)1.

C.2 How does JBC stack up?

So what do the Eigenfactor metrics tell us about the Journal of Biological

Chemistry (JBC )? In 20062, JBC had an Eigenfactor Score of 1.82.

Basically, this score tells us that the journal is both large and influential.

The Eigenfactor algorithm estimates that the JBC constitutes 1.82

percent of the total citation traffic in all of the scientific literature. In fact,

JBC has the fourth-highest Eigenfactor score out of the 7,611 journals

indexed, after only Science, Nature, and Proc. Nat. Acad. Sci. USA.

The 2006 Article Influence Score of JBC is 2.4. This means that an article

in this journal is on average 2.4 times more influential than the average

article in the JCR, placing it in the top 5% of all journals in all fields.

C.3 Cost Effectiveness

Another important consideration is the price of a journal. In studying the

economics of scientific publishing, we have been struck by the enormous

discrepancies in journal prices [7]. In most disciplines, the library

subscription prices for journals produced by for-profit publishers are 3 to 5

times as much per page as those charged for journals produced by societies
1As of February 2009, Eigenfactor scores and Article Influence scores are also provided

as part of Thomson-Reuters Journal Citation Reports database.
2At the time of publication, the 2006 scores were the latest available on the Eigenfac-

tor.org website. These scores will be updated periodically.
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and university presses. The high prices of many for-profit journals do not

reflect higher quality as measured by citation rates — but they have

contributed to the current serials crisis that leaves even large research

libraries unable to afford all of the journals that their users demand.

Quantitative measures of cost effectiveness are therefore useful as libraries

struggle to make difficult subscription decisions, and as authors endeavor

to steer their best work toward journals that provide good value to the

scholarly community. Our Cost Effectiveness3 tool provides a way of

quantifying the value per dollar that a journal provides; the basic

assessment metric is the subscription cost per Eigenfactor score. By this

measure, the JBC is an exceptionally good deal — the tenth best deal in

all of science, placing it in the 99.9% percentile in terms of the value per

dollar that it offers.

C.4 Mapping citation flow

The Eigenfactor Project is not, however, only about ranking and assessing

cost effectiveness. It is also about understanding the structure of the

sciences and mapping the way that citations flow among the disciplines.

The radial diagram in Figure C.1 illustrates one of the interactive tools we

have developed for exploring these patterns. In this figure, we see the flow

of citations between the JBC and 399 other leading journals in the natural

and social sciences. The most striking aspect of this diagram is the

breadth of reach that the JBC has across the sciences. We see strong
3Cost Effectiveness rankings can be found at http://www.eigenfactor.org/

pricesearch.php
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Figure C.1: Citation flow for the Journal of Biological Chemistry, from
well-formed.eigenfactor.org/radial.html. The figure highlights the citation
relationships between the JBC and the rest of science. The colors depict
major groups within science. For example, the greenish color represents
physics and chemistry. The thickness and opacity of the lines connecting
the different journals indicate connection strength.
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connections not only to chemistry, biochemistry and molecular biology but

also to neuroscience, medicine, evolutionary biology, ecology, geosciences,

and physics. We also see the major gaps in citation influence: there is little

connection between JBC and the area of astronomy and astrophysics, for

obvious reasons. The interactive on-line version of this diagram allows one

to select any field or journal and see its citation flow patterns; this

application can be found at

http://well-formed.eigenfactor.org/radial.html.

The Eigenfactor Project began as an attempt to better evaluate the

scholarly literature, using citation data and powerful tools from network

and information theory. In the process, we have found that citation

networks tell us not just about relative ranks among journals, but also

about the connections between them. We hope to use this information to

better understand the nature and structure of the scientific enterprise.
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