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Abstract—Publishers are increasingly using graphical ab-
stracts to facilitate scientific search, especially across disci-
plinary boundaries. They are presented on various media,
easily shared and information rich. However, very small
amount of scientific publications are equipped with graphical
abstracts. What can we do with the vast majority of papers
with no selected graphical abstract? In this paper, we first
hypothesize that scientific papers actually include a ”central
figure” that serve as a graphical abstract. These figures convey
the key results and provide a visual identity for the paper.
Using survey data collected from 6,263 authors regarding
8,353 papers over 15 years, we find that over 87% of papers
are considered to contain a central figure, and that these
central figures are primarily used to summarize important
results, explain the key methods, or provide additional discus-
sion. We then train a model to automatically recognize the
central figure, achieving top-3 accuracy of 78% and exact
match accuracy of 34%. We find that the primary boost
in accuracy comes from figure captions that resemble the
abstract. We make all our data and results publicly available at
https://github.com/viziometrics/centraul figure. Our goal is to
automate central figure identification to improve search engine
performance and to help scientists connect ideas across the
literature.

Keywords-Graphical Abstract; Central Figure; Machine
Learning; Scientific Documents Analysis

I. INTRODUCTION

The graphical abstract (GA), a visual summary of a

scholarly article’s main findings, is an emerging concept

in scientific publishing. Elsevier, the largest publisher1 of

scholarly articles, requests that authors provide GAs and use

them for online search results in facilitating the discovery

process. With no specific guidance or requirements provided

to authors, 68% and 65% of papers accepted in two of the

top computer vision conferences (International Conference

on Computer Vision (ICCV) and Conference on Computer

Vision and Pattern Recognition (CVPR)) include ”teaser

figures,” a form of GA. 350% increase of graphical abstracts

use in social sciences from 2011 to 2015 is demonstrated

by Yoon et al. [1]. The significant increase of the use of

GA can be related to human’s superior ability of perceiving

visual materials. It is believed that the human’s highly

developed visual cortex [2] contributes to better perception

of visual information than textual information [3]. As a

1Elsevier is not the only publisher requiring GAs. Other large publishers
are also requiring GAs, including Wiley-Blackwell.

result, visualizations play a significant role in scientific

communication. With the abundance of scientific papers,

GAs complement conventional text abstracts to help users

quickly identify papers relating to their interests [1], [4].

Elsevier submission guidelines 2 describe a graphical

abstract as a ”single, concise, pictorial and visual summary

of the main findings of the article” that should ”allow readers

to quickly gain an understanding of the main take-home

message of the paper” and ”encourage browsing, promote

interdisciplinary scholarship, and help readers identify more

quickly which papers are most relevant to their research

interests” which could be a ”concluding figure from the

article or a figure that is specially designed for the purpose,

which captures the content of the article for readers at a

single glance.”. Since not all publishing venues request a

GA at the time of submission and not all authors elect to

provide one, services that make use of graphical abstracts

only apply to a small fraction of the scientific literature [1].

In this paper, we consider the automatic selection of a

”central figure” (CF) that can be used as a graphical abstract

to visually summarize the paper’s objectives, results, or

methods, afford fast assessment of relevance, and provide

a basis for new search services. This framing assumes

that these CFs actually exist. To test this hypothesis, we

issued 488,590 survey invitations to authors of papers on

PubMed Central, asking them to identify the CF of their

own publications, or indicate if no CF exists (see Figure 1).

We also asked authors to explain the information represented

in the figure to understand what role it plays. Figure 1 shows

the survey interface. We received responses from 6,263

distinct authors across 8,353 papers. Author respondents

identified a central figure for 87.6% of the papers.

Next, we use the survey responses to train a model to

predict the CF in a paper. Existing GAs and teaser images

are unsuitable as training data due to selection biases toward

particular domains (typically visually oriented fields such as

computer vision, graphics, and visualization) and because

many such figures are created specifically for the purpose.

We use the term central figure (CF) in this paper to distin-

guish from GAs. In response to publisher request, authors

create GAs at the time of submission. CFs are selected from

existing figures after the paper has been published. A CF

2https://www.elsevier.com/authors/journal-authors/graphical-abstract
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may be suitable as a GA, and a GA may be identified as

the central figure of a paper, but the two terms are not

necessarily equivalent.

Using the results of our survey as training labels, we

extract features from the figures relating to figure content,

the surrounding text, and the overall paper layout. We use

these features in two different models: a figure-level model

that considers only one figure and its associated context at

a time, and a paper-level model that considers the set of

figures in a paper simultaneously. The paper-level model

with features from figure content combined with the sur-

rounding text and the overall paper layout produces the best

CF identification performance. We achieve top-3 accuracy of

77.9% and exact match accuracy of 33.6% for identifying

CFs with our features and model. The model outperforms

heuristic baselines of selecting the first figure in the paper

(25.8%), the last figure in the paper (26.9%), and uniform

random selection (26.4%). We find that the section title in

which the figure appears and the text similarity between the

abstract, the caption, and the inline reference of the figure

are predictive of the CF, suggesting that authors consider

these concepts in the design of their papers.

We make the following contributions:

• We conduct a large-scale survey to determine the preva-

lence and nature of the ”central figure” of a paper, with

6,263 distinct authors describing 8,353 papers.

• We combine features extracted from surrounding text,

figure type, and overall paper layout and further pro-

pose image-level model and paper-level for automated

identifying CF in scientific literature. The paper-level

model with all features included achieves top-3 accu-

racy of 77.9% and exact match accuracy of 33.6%.

• We conduct ablation studies to measure the influence

of individual features to provide information for au-

thors and publishers in each features. The experimental

results show that the similarity between image de-

scription, including captions and the inline reference

paragraph of images, and abstract is significant in

identifying central figures in scientific documents.

II. RELATED WORK

Yoon et al. [1] investigated the frequency of graphical

abstracts and the type of graphical abstracts that are adopted

in social science disciplines. Hullman [4] studied the design

pattern of graphical abstracts. However, only a small collec-

tion of articles were examined in both studies (772 and 54

respectively) and both studies focused on analyzing existing

GAs instead of creating tools to identify GAs.

Other studies have focused on automated tools to create

a representation that summarizes scientific articles have also

been considered. Strobelt et al. describe DocumentCards [5],

a system to extract textual and visual content from a scien-

tific literature and produce a high level representation. Their

approach relies on simple rules to create the visual summary

and can not be customized for different papers.

A number of studies have focused on the mining of

scientific figures. Chart classification was studied by Shao et

al. [6] and Lee et al. [7]. Recent studies have been focusing

on extraction of quantitative data from scientific visualiza-

tions, including line charts [8], bar charts [9], and tables

[10]. Researchers have also investigated the techniques to

understand the semantic messages of the scientific figures.

Kembhavi et al. [11] utilized a convolution neural network

(CNN) to study the problem of diagram interpretation and

reasoning. Elzer et al. [12] studied the intended messages

in bar charts. Besides, several visualization-based search

engines have been presented. DiagramFlyer [13], introduced

by Chen et al., is a search engine for data-driven diagrams.

VizioMetrics.org[14] and NOA[15] are both scientific figure

search engines, yet they both work primarily by examining

the captions around the figures rather than specific features

in the images.

III. DATA

This study was conducted using scientific papers from

PubMed Central (PMC), an archive of biomedical and life

science literature.

IV. CENTRAL FIGURE SURVEY

To obtain the labeled data for CF, we launched a large-

scale survey asking authors to identify CFs in their papers.

We extracted email addresses from the XML files provided

by PMC API and sent out 488,590 survey invitations.

Authors are asked to answer two questions for each paper:

• Click on one of the images to select ONE figure that
you could call the ”graphical summary” of the paper,
if one exists. A figure that summarizes the key aspects
of the article for readers at a single glance.

• What does the figure you selected represent?
For the first question, we used the descriptive term ”graph-

ical summary” rather than central figure to indicate our

intention. Authors can select from among all the figures

in the paper or select ”No such figure.” The latter option

allows us to validate whether or not the CF is a recognizable

concept in the current scientific literature. For the second

question, authors may select from five options: ”Results”,

”Discussion”, ”Model”, ”Methods”, and ”Other”.

A. Survey Results

As of December 1st, 2018, we had collected data on 8,353

distinct papers, from 6,263 distinct authors. Some authors

provided responses for more than one of their papers, and

some papers generated responses from more than one of its

authors. The publishing year distribution is shown in Figure

2. 74.0% of evaluated papers are published after 2010. Only

12.4% (1,036) of the evaluated paper were indicated not to

have a figure that satisfies our definition of CF (890) or for
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Figure 1: Snapshot of the survey. We asked authors of PubMed papers to identify the central figure of their own publications

using this interface. Authors were asked to select a figure, if it exists, that summarizes the key aspects of the article, or

choose ”No such figure”. We also asked authors to provide what kind of information the selected figure represents for the

article from five options, which are ”Results”, ”Discussion”, ”Model”, ”Methods”, and ”Other”.

which multiple authors selected different figures (146). For

the remaining 87.6% of the papers, the authors identified a

single CF, suggesting acceptance of the concept.

Figure 2: The publishing year distribution of evaluated

papers. 74.0% of evaluated papers are published after 2010.

B. Analysis of Objectives of Central Figure

Figure 3(a) illustrates the purpose of the central figure.

In 67.0% of the papers, the central figure represents results,

corroborating Yoon et al. who found that graphical abstracts

are most frequently used to present results [1]. This use of

the central figure affords an interpretation that a paper is

a delivery vehicle for one main result, which supports the

idea toward a results-oriented publishing model, where the

unit of publishing is a scientific workflow [16], [17] or a

nano-publication [18]. Methods and model were the next

most popular categories at 13.6% and 12.2%. Discussion is

responsible for only 5.1% of central figures. In 2.1% of the

papers the authors indicated the content as Other.

(a) (b)

Figure 3: (a) Author-indicated objective of the central fig-

ures. The survey results reveal that the most of the central

figures are used to represent scientific results. (b) Pie chart

of figure type distribution of central figures. 51.9% of central

figures are diagrams.

C. Analysis of Figure Content of Central Figure

After collecting the survey results, the next step is to

analyze the content within the figures. Using the class

assignments compiled by Lee et al. [19] and classifier

approach described by Lee et al. [7], we train a classifier to

identify different figure types. The training dataset, including

1871 equations, 3347 photos, 2849 diagrams, 2193 tables

and 4680 plots, is split into training set, validation set, and

test set with 8:1:1 ratio. We finetune a pre-trained ResNet-

50 [20] and obtain similar model performance reported by

Lee et al. [7]. We label the central figure as one of five

figure types. The totals are shown in Figure 3(b). 51.9%

of the central figures in the evaluated papers are diagrams,

which agrees with the findings of Yoon et al. [1] that most

GAs are diagrams. We found that despite the fact that plots

(graphs) and tables can both be used for presenting data,
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plots are much more popular when it comes to presenting

key information. This result agrees with Cleveland et al.

[21], who showed that fractional graph area (FGA) increases

as one moves from social to mathematical and then to natural

science. This finding also agrees with results from Smith et

al. [22] that suggest that technical fields of science tend

to use more graph-oriented figures than table-oriented. The

fact that equations are rarely found among central figures is

consistent with findings by Fawcett and Higginson [23].

V. MODEL CENTRAL FIGURES

The next task is to train a model to select the CF from all

figures in a paper. We consider three sources for identifying

the CF: (1) the content of the image, (2) the text describing

the image (and as it relates to the abstract), and (3) the

location of the figure in the paper. We will elaborate on

each source in the following subsections.

A. Image Content

The content of the image itself is not a good predictor

of centrality, as we will show, since many figures in a

paper look alike and our training set is limited. However,

we find it useful to consider the broad type of the image as

a feature. We classify each image into one of five categories,

diagram, plot, table, equation, and photo, using the classifier

developed by Lee et al. [19]. We label all the figures in the

datasets by running the figure type classifier mentioned in

Section IV-C. This categorical feature is encoded in a 5-d

one hot vector to represent the visual content of the figure.

B. Text Features

Each figure is described in both a caption and in one

or more inline references in the body of the paper. While

both sources of text can be used as features alone, we

also consider the similarity of these excerpts to the abstract

as an indicator that the text serves as a summary of the

overall paper. We will first explain the process of extracting

surrounding text of a figure from the paper and then describe

the similarity measures.

Text Extraction: We collect captions of the figures from

PubMed. To extract inline references in the body of the

paper, we use Science Parse 3 to parse the papers in pdf

format provided by PubMed and obtain the full text in

structural form. We then search the pattern that consist

of words, including Figure, Fig, and Table, followed by a

number using regular expression. We select the paragraph

blocks contain the inline references in between two break

line (\n) characters. Finally, we match the index between

the inline references and the captions of the figures.

Similarity Between Caption and Abstract: An abstract

is a summary of the paper’s results. High similarity between

a figure’s caption and the paper’s abstract would therefore

indicate that the figure plays a potential summarizing role

3https://github.com/allenai/science-parse

as well. We experiment with three different similarity mea-

sures: (1) TF-IDF, (2) Elmo-avg and (3) Elmo-DynaMax.

• TF-IDF + Cosine Similarity: We preprocess the cap-

tions, the inline references and abstracts from training

set by tokenizing the documents and removing the

stop words. We pick the most frequent 1,024 words to

construct TF-IDF weights and the weights are acquired

from the preprocessed training set. The dimensionality

is picked to match with the competitive similarity

measures. For each image, we apply the weights to the

concatenation of the caption and the inline reference.

Every abstract is also embedded in the TF-IDF vector.

We finally compute the cosine similarity between the

two vectors. We will refer this similarity measure as

TF-IDF for simplicity.

• Elmo-avg [24]: Elmo is one of the state-of-the-art

contextualized word embedding models. The word rep-

resentations are functions of the internal states of a

bidirectional language model. Elmo has been trained in

large-scale scientific documents from PubMed, making

Elmo a natural candidate for our task. The contextu-

alized word representation is obtained from the top

layer of the pre-trained Elmo model, and we average

the word representations to acquire the representation

vector for both the image descriptions and abstract.

The cosine similarity is computed between the averaged

word vectors of image descriptions and abstract.

• Elmo-DynaMax [24] [25]: Zhelezniak proposed a

similarity measure, DynaMax, that dynamically ex-

tracts max-pool features based on the sentence pair.

This method outperforms current baselines on several

tasks [25]. The DynaMax similarity is computed be-

tween the image descriptions and the paper’s abstracts

from Elmo word vectors.

C. Layout

We produced two numerical features and one categorical

feature from image position: (1) normalized section index,

(2) image order, and (3) section heading:

• Normalized section index: Normalized section index

is used to represent the position of the image within

the layout of the paper. For example, in a paper with

sections ”Introduction,” ”Methods,” and ”Results,” the

corresponding sequentially increasing section identi-

fiers would be 0, 1, and 2. The normalized version of

the identifiers would be its original value divided by

the maximum identifier value.

• Image Order: The sequentially increasing numerical

identifier for an image based on its order of occurrence

in a paper.

• Section Heading: The survey shows 67% of the cases

with central figures are used to represent results. To

capture this feature, we constructed unigram represen-

tations of the section headings of papers in our dataset
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for both the entire headings and their distinct words. We

then transformed the top ten frequently occurring words

in the section headings unigram model in to ten unique

boolean classification features, each denoting ”1” for

whether the corresponding word occurred in a given

section heading, and ”0” otherwise.

VI. MODELS

In this section, we illustrate two different models to

identify central figures.

A. Figure-level Model

This approach attempts to predict whether an individual

figure is a central figure without considering the other figures

in the paper. Let X = {xi : i} be the features of the

images and each image corresponds to a label yi, where

yi ∈{− 1, 1}. central figures are labeled as 1 and non-

central figures are labeled as -1. We learn a mapping function

f : X → Y using machine learning techniques, which

include logistic regression, random forest, gradient boosting,

support vector machine (SVM), and neural networks.

To pick the central figure from a paper A = {aj : j}, we

select the figure with highest probability predicted by each

classifier f : Cj = argmaxxi∈Aj
(P (f(xi) = 1))

B. Paper-level Model

This approach predicts the position of the central figure

given all figures in a paper. For example, if a paper has

10 figures, we concatenate all 10 feature vectors, and then

predict an integer 0..9 to indicate which figure is the central

figure. Let V = {vj : j} represent a feature vector for each

paper. vj is a n x d vector where n is a parameter and d is the

dimension of image feature. Since there are variable number

of figures in different papers and basic machine learning

models only take fixed dimension inputs, we introduce a

hyperparameter n to serve as the threshold for the number

of figures. We pad zero if the number of figure is smaller

than n in a paper. For the case where the number of figure

is larger than n, we select n figures whose captions are most

similar to the abstract based on our TF-IDF model to fill vj .

The classifiers f will learn a mapping function f : V → I ,

where I ∈ {0, 1, ..., n} is the index of the central figure. We

experiment on the ensemble and regression learning methods

plus neural networks listed in previous sub section.

VII. EXPERIMENTS

In this section, we first define evaluation metrics on our

task. Next, we explain the implementation details of our

models. Baseline models are next introduced as compar-

isons. Finally, quantitative results of our image-based model

and paper-based model are presented.

A. Evaluation Metrics

The image accuracy is applied to evaluate the image based

model. The image accuracy is defined as:

imageACC =
True Positive + True Negative

Total number of the images
(1)

We use two metrics, ACC and ACC@3, to evaluate the

overall capability of selecting central figure from a paper.

ACC =
Nc

Nt
(2)

where Nc is the number of the papers with correct central

figure prediction and Nt is the total number of the papers.

ACC@3 =
Nc@3

Nt
(3)

where Nc is the number of the papers with the correct

central figure prediction, within the 3 figures with highest

probability. Nt is the total number of papers.

B. Implementation Details

We remove the evaluated papers which do not have central

figures and split the data into training, validation, and test

set with 8:1:1 ratio. We run our experiments on the training

and validation set. The final model is trained by the data

from both training set and validation set and accuracy results

reported below are conducted on test set.

Regression and ensemble models are trained using Scikit-

learn and we use default values for hyperparameters. The

neural network model include three fully connected layers

with dimensions 100-100-n. Drop out layers with drop out

rate 0.2 are inserted between the fully connected layers. All

the models are trained with learning rate 0.01 and 0.01 decay

for 100 epochs.

C. Baseline Models

We introduce three naive baseline models as comparisons.

• Pick First: First image is selected as prediction in this

model. We pick first three images in the paper as top

three guesses for ACC@3 evaluation metric.

• Pick Last: The last image is selected as prediction in

this model. We pick last three images in the paper as

top three guesses for ACC@3 evaluation metric.

• Randomly Select: We randomly select an image as

prediction. Three images are randomly selected as the

top 3 guesses for the ACC@3 evaluation metric.

Table I: Performance of baseline models.

Pick First Pick Last Randomly Select

ACC ACC@3 ACC ACC@3 ACC ACC@3
0.258 0.704 0.269 0.679 0.264 0.706

The performance of the baseline models is shown in Table

I. There are 4.68 images in a paper on average in the dataset.

Accuracy of 0.264 from randomly select model makes sense.
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D. Image-level Model

Table II: Image accuracy (Equ. 1) of central figure classifi-

cation from image-based models.

Logistic
Regression

Random
Forest

Gradient
Boosting

SVM
Neural

Networks
0.626 0.616 0.621 0.673 0.684

Table II shows the classification results from each clas-

sifier on identifying central figure. Overall, every classifier

is able to achieve more than 60% accuracy on classifying

between central figure and non-central figure on figure level.

The accuracy of central figure prediction given paper is

shown in Table III. Not surprisingly, this simple image-based

model does not perform well on selecting the central figure

from a list of figures. The model is not able to learn the

structural relationships between figures from the same paper.

E. Paper-level Model

We run an experiment to determine hyperparamter n (the

threshold for the number of figure to be accommodated for

the input V ). The experimental results are shown in Figure

4. The blue line, which corresponds to the y axis on the

left, is the accuracy of the model and the red line shows the

percentage of central figures that were left out because of our

selection of n. The selection of n has insignificant influence

to the model when n is larger than 6 and the maximum

number of figure a paper has in our validation set is 12.

Thus, we pick n = 15 for the rest of the experiments.

Figure 4: Experimental results on hyperparameter n. When

n is larger than 6, selection of n does not affect the accuracy

of the model.

The results for paper-level model with different feature

combinations are shown in Table III. The logistic regression

classifier performs the best among all the models, includ-

ing neural networks. The poor performance from neural

networks is likely due to insufficient data and low dimen-

sional features. The text context has the most predictive

power among the three sets of features, while the visual

figure content has the least. Our interpretation of these

results is that similarity between the figure caption and

paper abstract not only provides the representation of the

image but it also suggests the relationship to the paper.

On the other hand, without any further information of the

paper, figure type is irrelevant to determine central figure

in this generation of the model. Also, surprisingly, the

simple TF-IDF representation produces better performance

than the Elmo word representations in more than half of

the models. We speculate that the terms used in captions,

and the contexts in which they are used are sufficiently

specialized to allow the simpler representation to outperform

pre-learned representations based on a larger corpus of text.

Using max-pool followed by fuzzy Jaccard index to compute

similarity between two documents has superior results over

averaging the word vectors, which agrees with the findings

of Zhelezniak et al. [25]. Considering the difficulty of the

task and the variability of scientific figures, we see our

results as a reasonable start for automatically identifying

central figures.

We investigate the effectiveness of our feature selection.

We replace the similarity between abstract, caption and

inline reference with a text representation vector of the

caption and inline reference. We also experiment with using

image embedding extracted from pre-trained ResNet-50 [20]

instead of categorical feature based on the figure content.

Even though the model was trained on 1M natural images,

we find that the embeddings that capture visual patterns and

colors are sufficiently general to represent the combinations

of edges and shapes that comprise artificial images as

well. The results are presented in Table IV. The experi-

ments demonstrate that using similarity between abstract,

image caption, and inline reference boost the central figure

identification performance and that the categorical label of

image content is more beneficial than image embedding.

Our interpretation is that the high similarity between a

paper’s abstract and a image’s surrounding text does indicate

the centralization of the figure and that the original text

representations and image embeddings are too sparse and

noisy for the model to learn an effective function.

VIII. DISCUSSION

Scholarly communication is moving away from just a sim-

ple PDF. Individual insights, experiments, and conclusions

can be communicated across different media and platforms.

In this paper, we focus on the role that visual information

plays in communicating the key results, models or concepts.

The idea behind a central figure is that it provides an

alternative access point to the content of the paper. In some

papers, it can reveal the key results and conclusions better

than the title, abstract, keywords or authors. Figure 5 shows

two prototypes of how to introduce the central figure in an

image-oriented scientific search interface, viziometrics.org.

As shown in Figure 5(a), the central figure is highlighted

with a star on the search interface. The entry page could

feature the central figure along with textual abstracts as

shown in 5(b). With these two additional features, users are

able to quickly ascertain the overall concept of the article

with the help of central figure at a single glance.
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Table III: The results of paper-level model with different classifiers. Surprisingly, logistic regression outperforms random

forest and gradient boosting. Textual content is the most useful feature on recognizing central figure, compared to visual

content and the position feature.

Logistic Regression Random Forest Gradient Boosting SVM Neural Network

Text Visual Layout ACC ACC@3 ACC ACC@3 ACC ACC@3 ACC ACC@3 ACC ACC@3

Figure-level model

TF-IDF v v 0.140 0.691 0.248 0.703 0.126 0.685 0.126 0.690 0.142 0.688

Paper-level model

TF-IDF - - 0.302 0.764 0.318 0.724 0.314 0.760 0.314 0.756 0.311 0.718

- v - 0.289 0.730 0.278 0.693 0.286 0.731 0.319 0.748 0.282 0.724

- - v 0.296 0.757 0.284 0.723 0.284 0.741 0.299 0.746 0.284 0.756

TF-IDF v - 0.317 0.757 0.292 0.712 0.295 0.764 0.322 0.749 0.276 0.716

TF-IDF - v 0.323 0.782 0.277 0.690 0.335 0.765 0.273 0.708 0.280 0.750

- v v 0.312 0.742 0.267 0.703 0.302 0.720 0.300 0.724 0.293 0.739

Elmo-avg v v 0.329 0.771 0.262 0.670 0.314 0.771 0.299 0.729 0.299 0.738

Elmo-DynaMax v v 0.330 0.769 0.285 0.679 0.321 0.778 0.299 0.733 0.282 0.739

TF-IDF v v 0.336 0.779 0.267 0.701 0.314 0.760 0.302 0.727 0.306 0.745

Table IV: Experimental results on using text representation

and image embedding. Sim() indicates the model uses sim-

ilarity between paper’s abstract, image caption, and inline

reference computed by the text representation in the paren-

thesis. Vec() implies the model utilizes the representation

vectors derived from the model in the parenthesis. Label
represents the model includes the categorical label described

in Section V-A as image content feature. We can observe that

using similarity and the categorical label of image content

produces better performance than using representations.

Logistic Regression

Text Visual Layout ACC ACC@3

Sim(TF-IDF) Label v 0.336 0.779
Using Image Embedding from Pre-trained ResNet-50

Sim(TF-IDF) Vec(ResNet) v 0.323 0.761

Using Text Representation Vectors

Vec(TF-IDF) Label v 0.310 0.722

Vec(Elmo-avg) Label v 0.300 0.723

Using Both Text Representation Vectors and Image Embedding

Vec(TF-IDF) Vec(ResNet) v 0.288 0.741

Vec(Elmo-avg) Vec(ResNet) v 0.293 0.705

(a) (b)

Figure 5: Prototype interfaces on viziometrics.org allow

individuals to search for images from scientific literature

with the aid of ”central figures”. (a) Central figure is starred

for easy recognition on searching interface. (b) Prototype

of entry page for each article. The entry interface of each

article could be led with the central figure along with textual

abstract to help the users understand the articles quickly.

Publishing culture has changed dramatically over the last

few decades due to the introduction of multiple open access

platforms, such as arXiv and PubMed, as well as the signif-

icant increase of scientific publications. With more open ac-

cess platforms available, the accessibility of innovative ideas

pushes the advance of science and allows the community

to share and communicate ideas in different formats. The

presentation of new scientific ideas is no longer restricted

to traditional document copies or digitized pdf formats. For

example, we can easily find comprehensive ablation studies

of the state-of-the-art deep learning models on GitHub.

Google AI 4 hosts a blog to introduce and advertise their

progress on innovative scientific findings and technologies.

Plus, the overwhelming scale of scientific publications [26],

[27] that are published every year. Several recent studies

[1], [4] have explored new measures for the community to

quickly grasp the main messages of the scientific documents.

The scientific publishing enterprise has shifted to be more

open to the public and less restrictive on format, and we

believe the identification and extraction of central figures

can play an important role in the evolution of the scientific

communication. A central figure provides a visual summary

of the key results, objectives, or methods of a paper. It is

adaptable to varying media and platforms, easy to share,

and information-rich. We can see each central figure as

a visual ”nanopublication” [18] and use it to reduce the

redundancy of traditional publications. Every central figure

is a module of condensed ideas and can be transmitted

and shared easily. Therefore, central figures can contribute

greatly in the evolution of scientific communication with

quick idea transferring and flexible publishing platforms.

IX. CONCLUSION

Visualizations will play an increasingly important role in

scholarly communication. The goal of this paper was to

focus on visual objects that convey the central findings of

a research paper. We collected more than eight thousand

4https://ai.googleblog.com/
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labeled data for central figure identification from a large-

scale survey. 87.6% of the evaluated papers included a

central figure noted by the authors. This was evidence

that central figures exist and they perform a function in

scholarly communication. We extracted features from the

figure content, surrounding text, and the overall paper layout

as a way of training a figure-level model and a paper-level

model. The results reveal that the paper-level model with all

features produce the best performance overall in identifying

central figures. We achieve top-3 accuracy of 77.9% and

exact match accuracy of 34%. We also demonstrate that

the caption, inline description, and layout shows higher

importance than figure content in this task. Survey data and

code are publicly available 5, and we hope the released data

can attract the community to investigate this problem and

further contribute to the scientific communication.
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