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Introduction

Methods

Since its introduction by Sewall Wright (1932), the �tness landscape has been a popular metaphor for 
describing how populations evolve. In these landscapes, where elevation represents �tness, popula-
tions move via small, mutational steps.  Selection drives populations uphill (improving their �tness), 
while drift allows populations to wander. In cases of strong selection, a population can become 
trapped on a sub-optimal peak, unable to further improve its �tness. Wright’s explanation for how 
populations escape these sub-optimal peaks involves genetic drift.  However, an understudied mecha-
nism for escaping sub-optimal peaks is the e�ect of changing enviroments (Fisher 1932). A population 
trapped on a sub-optimal peak with respect to one environment can move to a new position when the 
environment (and thus landscape) changes. Switching back to the reference environment, the popula-
tion may be in a position to climb a di�erent (and perhaps higher) peak.

We are interested in how populations evolve in changing environments.  One approach would be to 
determine �tnesses for all genotypes in all environments (i.e. determine the topology of all lanscapes).  
Unfortunately, the enormous number of possible genotypes makes this impossible. Therefore, we take 
a top-down approach that involves repeatedly evolving populations where the environment can be 
manipulated with �ne precision.  This requires a fast-evolving system that is well understood and trac-
table.  The two systems that we have used thus far are Escherichia coli and Avida.  For this poster, we 
focus on the Avida portion of the study. 

Avida is a computer program that contains an evolving population of organisms (Avidians).  The �tness 
of an Avidian is determined by how quickly it replicates.  Avidians can replicate faster by performing 
certain tasks.  The environment determines which tasks are rewarded.

In our Static Regime, the environment remains 
constant for the duration of the run.  In contrast, the 
Dynamic Regime spends the �rst third of the run in 
a reference environment (A), the middle third in a 
di�erent alternative environment (B) and then re-
turns to the reference environment (A) for the last 
third (see �gure below).  Every run is initially seeded 
with a same ancestor (which can perform none of 
the tasks) and spans the same duration.

A visual representation of an Avidian’s  
anatomy (from Lenski et. al, Nature 2003).  

Discussion & Future Directions
In a related study, Kashtan et al. (PNAS 2008) found that populations exposed to varying environments 
reach global optima faster than when the environment is held constant.  Our �ndings are consistent with 
their results, in that exposure to di�erent environments can improve �tness. 

Results: multiple runs

Results: single runs

Comparison of evolutionary outcomes due to shifting 
environments.  ‘Update' is an arbitrary time unit equal to 
the time required to execute ~ 30 instructions.  The �t-
ness of each individual is measured relateive to the ref-
erence environment (rewarding the tasks Not, Nand, 
And & Equals).  The black line is the mean �tness of 407 
runs, evolved only in the reference environment.  The 
red line is the mean �tness in the reference environment 
of 404 runs, evolved under a dynamic regime. Under the 
dynamic regime, Avidians experience the alternative en-
vironment (rewarding Not, Nand, And, OrNot, Or & 
AndNot). Shading around the black and red lines indi-
cates standard error.  The blue region represents the al-
ternative environment (only applicable to the dynamic 
regime).  At the conclusion of the run, the di�erences in 
�tness are statistically signi�cant (Welch's t-test, p < 
0.001).     

When traversing a �tness landscape, populations may become trapped at sub-optimal peaks.  The represen-
tation of a rugged landscape is shown in the �gure above.  In the top portion of the �gure, the blue dot rep-
resents the ancestral population.  The black line indicates the evolutionary trajectory of that population 
over time.  The point marked with an "x" is a sub-optimal peak where the population becomes trapped.  A 
change in the environment can produce a di�erent landscape, like that seen in the middle portion of the 
�gure.  In the new landscape, the population may not be trapped, allowing for movement across the land-
scape.  If this population is returned to the original environment (and landscape), the population may be in 
a position to climb a di�erent (perhaps higher) peak, marked with the red dot. 

The evolutionary history of two sample runs from the Mean Evolutionary Trajectories data.  The circles 
represent every distinct individual in the line of descent (distinguished by mutation).  The words repre-
sent gain (+) or loss (-) of the ability to perform the task (asterisk denotes gain of unrewarded ability).  For 
example, Avidians typically acquire the ability to perform the logic function 'Not' (negation of a single 
input) early in its evolutionary history.    

Two lineages are shown–a static run and a dynamic run.  The points are the �tnesses measured relative to 
the reference environment.   The dark blue line in the dynamic run is the �tness measured relative to the 
alternative environment.   
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We are exploring other types of changing environ-
ments.  One type of alternative environment rewards 
only those tasks that are not rewarded in the refer-
ence environment.  Preliminary results in these Or-
thogonal Environments show improved �tness 
relative to static evolutionary runs.  

Another type of alternative environment involves re-
warding the same tasks as the reference environ-
ment, except that tasks are rewarded in a frequency 
dependent manner. In other words, rewards are pro-
portional to the rarity of the ability to perform a task 
in the population. The landscape in this scenario is 
dependent on the location of  the population. Acqui-
sition of a new ability alters the landscape–a bit like 
walking around on a waterbed (also referred to as 
Niche Construction). Preliminary analysis (see right) 
has shown that niche construction may be an e�ec-
tive way to search the landscape. 
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